Chapter 3 Product overview

3.1 What this chapter contains

The chapter briefly describes the operation principle, product characteristics, layout, name plate and type designation information.

3.2 Basic principles

Goodrive35 series VFDs are wall, floor and flange mountable devices for controlling asynchronous AC induction motors and permanent magnet synchronous motors. It supports wall, fange, and floor installation.

The diagram below shows the simplified main circuit diagram of the VFD. The rectifier converts three-phase AC voltage to DC voltage. The capacitor bank of the intermediate circuit stabilizes the DC voltage. The inverter transforms the DC voltage back to AC voltage for the AC motor. The brake pipe connects the external brake resistor to the intermediate DC circuit to consume the feedback energy when the voltage in the circuit exceeds its maximum limit.

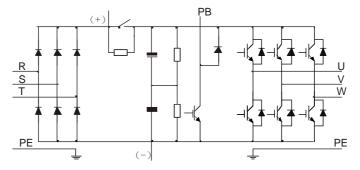


Figure 3-1 The simplified main circuit diagram (VFDs of 380 V≤30 kW)

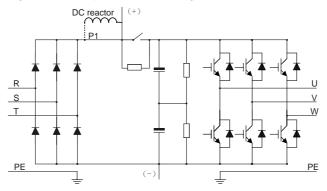


Figure 3-2 The simplified main circuit diagram (VFDs of 380 V≥37 kW)

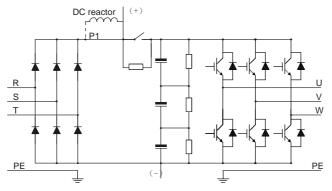


Figure 3-3 The simplified main circuit diagram (VFDs of 660 V)

Note:

- ☆ The VFDs of 380 V (≥37 kW) supports external DC reactors and external brake units, but it is necessary to remove the copper tag between P1 and (+) before connecting. DC reactors and brake units are optional.
- ♦ The VFDs of 380 V (≤30 kW) supports external brake resistors which are optional.
- The VFDs of 660 V supports external DC reactors and external brake units, but it is necessary to remove the copper tag between P1 and (+) before connecting. DC reactors and brake units are optional.

	Function	Specification					
		AC 3PH 380 V (-15%)–440 V (+10%)					
	Input voltage (\/)	Rated voltage: 380 V					
	Input voltage (V)	AC 3PH 520 V (-15%)–690 V (+10%)					
Power input		Rated voltage: 660 V					
	Input current (A)	Refer to section 3.6 "Rated values"					
	la mot f an avera avera (11-)	50 Hz or 60 Hz					
	Input frequency (Hz)	Allowed range: 47–63 Hz					
	Output voltage (V)	0-input voltage					
Devenue	Output current (A)	Refer to section 3.6 "Rated values"					
Power output	Output power (kW)	Refer to section 3.6 "Rated values"					
	Output frequency (Hz)	0–400 Hz					
	Control mode	SVPWM, SVC and VC					
Technical	Madandana	Asynchronous motor and permanent magnet					
control	Motor type	synchronous motor					
feature	Adjustable appendiratio	Asynchronous motor 1: 200 (SVC) synchronous motor 1:					
	Adjustable-speed ratio	20 (SVC) 1: 1000 (VC)					

3.3 Product specification

	Function	Specification				
	Speed control accuracy	±0.2% (SVC) ±0.02% (VC)				
	Speed fluctuation	± 0.3% (SVC)				
	Torque response	<20 ms (SVC), <10 ms (VC)				
	Torque control accuracy	10% (SVC), 5% (VC)				
		Asynchronous motor: 0.25 Hz/150% (SVC)				
	Starting torque	Synchronous motor: 2.5 Hz/150% (SVC)				
		0 Hz/200% (VC)				
		150% of rated current: 1 minute				
	Overload capability	180% of rated current: 10 seconds				
		200% of rated current: 1 second				
		Digital setting, analog setting, pulse frequency setting,				
		multi-step speed running setting, simple PLC setting, PID				
	Frequency setting	setting, Modbus communication setting, and PROFIBUS				
	method	communication setting.				
		Switch between the combination and single setting				
Running		channel				
control	Auto-adjustment of the	Keep constant voltage automatically when the grid				
feature	voltage	voltage transients				
		Provide more than 30 fault protection functions:				
	Fault protection	overcurrent, overvoltage, undervoltage, overheating,				
		phase loss and overload, etc.				
	Restart after rotating	Smooth starting of the rotating motor				
	speed tracking	Note: Only for the VFD≥4 kW				
	Terminal analog input	≤ 20 mV				
	resolution					
	Terminal switch input	≤ 2 ms				
	resolution					
	Analog input	2 (AI1, AI2) 0–10 V/0–20 mA and 1 (AI3) -10–10 V				
	Analog output	2 (AO1, AO2) 0–10 V/0–20 mA				
Peripheral	0	8 common inputs, the Max frequency: 1 kHz, internal				
interface	Digital input	impedance: 3.3 k Ω ;				
		1 high speed input, the Max frequency: 50 kHz				
	Digital output	1 high speed pulse output, the Max frequency: 50 kHz;				
		1 Y terminal open collector output				
		2 programmable relay outputs				
	Relay output	RO1A NO, RO1B NC, RO1C common terminal				
		RO2A NO, RO2B NC, RO2C common terminal				
		Contactor capability: 3 A/AC 250 V,1 A/DC 30 V				

	Function	Specification					
	Caindle steaming	For spindle positioning and control sequence					
	Spindle stopping	Internal 7 scale marks and 4 zero marks					
	De sitiere neference	External zero-position detection switch positioning					
	Position reference	Encoder Z phase positioning					
	Servo control	Pulse train reference: position control					
	Frequency division	Encoder frequency division output					
	output	(H1 and H2 VFDs)					
	Speed/position mode	Terminal shifting					
	- ,	C1 support 100 kHz, D1 support 500 kHz, H1 support					
	Encoder	300 kHz and H2 support 400 kHz					
	Desitiening	Pulse Z and photoelectric switch positioning. Positioning					
	Positioning	is accurate without overmodulation.					
	Mountable method	Wall, flange and floor mountable					
	Temperature of the	-10-50°C, if temperature is above 40°C, derate 1% for					
	running environment	every additional 1°C.					
	Average non-fault time	2 years (25°C ambient temperature)					
	Protective degree	IP20					
	Pollution level	Level 2					
Others	Cooling	Air-cooling					
		Built-in for VFDs of 380 V (≤30 kW)					
	Brake unit	External for others					
		All products of the 380V series meet the IEC61800-3 C3					
		requirements.					
	EMC filter	External filters that meet the IEC61800-3 C2					
		requirements are optional.					

3.4 Product nameplate

Figure 3-4 Product nameplate

Note: This is an example of the nameplate of standard Goodrive350 products. The CE/TUV/IP20marking on the top right will be marked according to actual certification conditions.

3.5 Model code

The model code contains information on the VFD. The user can find the model code from the nameplate on the the VFD or from the simplified nameplate.

Figure 3-5 Model code

Key	Sign	Instruction	Content			
Abbreviation	1	Abbreviation	Goodrive35: Goodrive35 close-loop vector control VFDs			
Dete da sur		Damage	5R5-5.5 kW			
Rated power	2	Power + Load	G—constant torque load			
			4: AC 3PH 380 V (-15%)–440 V (+10%)			
Voltage	(3)		Rated voltage: 380 V			
degree	0	Voltage degree	6: AC 3PH 520 V (-15%)–690 V (+10%)			
			Rated voltage: 660 V			
			C1: Support 24 V incremental encoder			
			D1: Support rotary transformer			
			Optional PG cards with functions of pulse and direction			
			pulse input reference			
			H1: Support 5 V/12 V incremental encoder, differential,			
		Lot number	push-pull, and open collector signals;			
Lot number	4		Pulse + direction pulse input reference			
			H2: Support 5 V incremental encoder for high-speed			
			differential signal processing;			
			Pulse + direction pulse input reference (specific for			
			machine tools)			
			S1: Support sin/cos encoder, sin/cos (1 Vpp) eg			
			Heidenhain ERN1387; support quadrature pulse input			

3.6 Rated values

3.6.1 Rated value of AC 3PH 380 V (-15%)-440 V (+10%)

Model	Output power (kW)	Input current (A)		Carrier frequency (kHz)
GD35-1R5G-4-C1/D1/H1	1.5	5.0	3.7	1–15 (8)
GD35-2R2G-4-C1/D1/H1	2.2	5.8	5	1–15 (8)
GD35-004G-4-C1/D1/H1/H2/S1	4	13.5	9.5	1–15 (8)
GD35-5R5G-4-C1/D1/H1/H2/S1	5.5	19.5	14	1–15 (8)
GD35-7R5G-4-C1/D1/H1/H2/S1	7.5	25	18.5	1–15 (8)
GD35-011G-4-C1/D1/H1/H2/S1	11	32	25	1–1s5 (8)
GD35-015G-4-C1/D1/H1/H2/S1	15	40	32	1–15 (4)

Goodrive35 Series Closed-loop Vector Control VFD

Product overview

Model	Output	Input current	Output	Carrier
model	power (kW)	(A)	current (A)	frequency (kHz)
GD35-018G-4-C1/D1/H1/H2/S1	18.5	47	38	1–15 (4)
GD35-022G-4-C1/D1/H1/H2/S1	22	56	45	1–15 (4)
GD35-030G-4-C1/D1/H1/H2/S1	30	70	60	1–15 (4)
GD35-037G-4-C1/D1/H1/S1	37	80	75	1–15 (4)
GD35-045G-4-C1/D1/H1/S1	45	94	92	1–15 (4)
GD35-055G-4-C1/D1/H1/S1	55	128	115	1–15 (4)
GD35-075G-4-C1/D1/H1/S1	75	160	150	1–15 (2)
GD35-090G-4-C1/D1/H1/S1	90	190	180	1–15 (2)
GD35-110G-4-C1/D1/H1/S1	110	225	215	1–15 (2)
GD35-132G-4-C1/D1/H1/S1	132	265	260	1–15 (2)
GD35-160G-4-C1/D1/H1/S1	160	310	305	1–15 (2)
GD35-185G-4-C1/D1/H1/S1	185	345	340	1–15 (2)
GD35-200G-4-C1/D1/H1/S1	200	385	380	1–15 (2)
GD35-220G-4-C1/D1/H1/S1	220	430	425	1–15 (2)
GD35-250G-4-C1/D1/H1/S1	250	485	480	1–15 (2)
GD35-280G-4-C1/D1/H1/S1	280	545	530	1–15 (2)
GD35-315G-4-C1/D1/H1/S1	315	610	600	1–15 (2)

Note:

- The input current of VFDs 1.5–315 kW is detected when the input voltage is 380 V and there is no DC reactors and input/output reactors.
- \diamond The rated output current is defined when the output voltage is 380 V.
- The output current cannot exceed the rated output current and the output power cannot exceed the rated output power in the voltage range.

3.6.2 Rated value of AC 3PH 520 V (-15%)-690 V (+10%)

Model	Output power (kW)	Input current (A)	Output current (A)	Carrier frequency (kHz)
GD35-022G-6-C1/D1/H1	22	35	27	1–15 (4)
GD35-030G-6-C1/D1/H1	30	40	34	1–15 (4)
GD35-037G-6-C1/D1/H1	37	47	42	1–15 (4)
GD35-045G-6-C1/D1/H1	45	52	54	1–15 (4)
GD35-055G-6-C1/D1/H1	55	65	62	1–15 (4)
GD35-075G-6-C1/D1/H1	75	85	86	1–15 (2)
GD35-090G-6-C1/D1/H1	90	95	95	1–15 (2)
GD35-110G-6-C1/D1/H1	110	118	131	1–15 (2)
GD35-132G-6-C1/D1/H1	132	145	147	1–15 (2)

Goodrive35 Series Closed-loop Vector Control VFD

Model	Output	Input current	Output current	Carrier frequency
woder	power (kW)	(A)	(A)	(kHz)
GD35-160G-6-C1/D1/H1	160	165	163	1–15 (2)
GD35-185G-6-C1/D1/H1	185	190	198	1–15 (2)
GD35-200G-6-C1/D1/H1	200	210	216	1–15 (2)
GD35-220G-6-C1/D1/H1	220	230	240	1–15 (2)
GD35-250G-6-C1/D1/H1	250	255	274	1–15 (2)
GD35-280G-6-C1/D1/H1	280	286	300	1–15 (2)
GD35-315G-6-C1/D1/H1	315	334	328	1–15 (2)
GD35-350G-6-C1/D1/H1	350	360	380	1–15 (2)
GD35-400G-6-C1/D1/H1	400	411	426	1–15 (2)
GD35-500G-6-C1/D1/H1	500	518	540	1–15 (2)
GD35-560G-6-C1/D1/H1	560	578	600	1–15 (2)
GD35-630G-6-C1/D1/H1	630	655	680	1–15 (2)

Note:

- The input current of VFDs 22–350 kW is detected when the input voltage is 660 V and there is no DC reactors and input/output reactors.
- ♦ The input current of VFDs 400–630 kW is detected when the input voltage is 660 V and there are input reactors.
- \diamond The rated output current is defined when the output voltage is 660 V.
- The output current cannot exceed the rated output current and the output power cannot exceed the rated output power in the voltage range.

3.7 Structure diagram

The VFD layout is shown below (take 380 V 30 kW as an example).

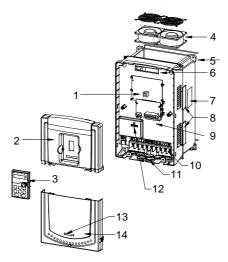
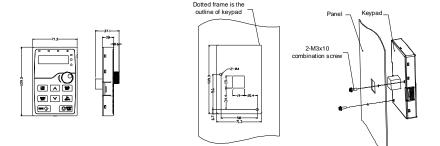


Fig 3-6 Structure diagram

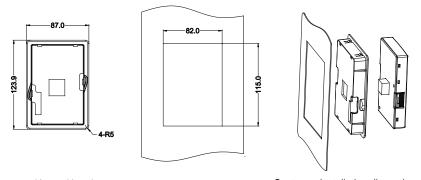
Serial No.	Name	Illustration						
1	Keypad interface	Connect the keypad						
2	Upper cover plate	Protect the internal parts and components						
3	Keypad	See Chapter 5 "Keypad operation procedures" for detailed information						
4	Cooling fan	See Chapter 9 "Routine maintenance" for detailed information						
5	Wiring interface	Connect to the control board and the drive board						
6	Nameplate	See Chapter 3 "Product overview" for detailed information						
7	Ventilation hole cover plate	Optional. The ventilation hole cover plate will increase the protection level as well as the internal temperature of the VFD, which requiring the VFD to be used under derating.						
8	Control terminals	See Chapter 4 "Installation guide" for detailed information						
9	Main circuit terminals	See Chapter 4 "Installation guide" for detailed information						
10	Main circuit cable inlet	Fix the main circuit cable						
11	POWER light	Power indicator						
12	Simple nameplate	See section 3.5 "Model code" for detailed information						
13	Lower cover plate	Protect the internal parts and components						


Appendix C Dimension drawings

C.1 What this chapter contains

Dimension drawings of the Goodrive35 are shown below. The dimensions are given in millimeters and inches.

C.2 Keypad structure

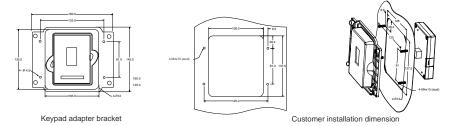
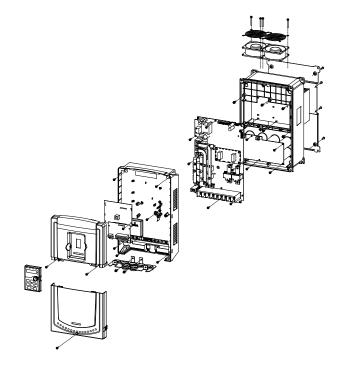

C.2.1 Structure chart

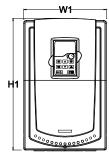
Hole dimension and diagram for keypad installation without bracket

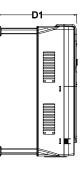
C.2.2 Installation bracket

Note: The external keypad can be fix by M3 screws directly or the installation bracket. The installation bracket for VFDs of 380 V 1.5–30 kW is optional, the installation bracket for VFDs of 380 V 37–315 kW and 660 V 22–630 kW is optional or substitutive by the external standard one.

Keypad bracket Customer installation dimension Figure C-1 Installation bracket of the keypad (380 V 1.5–315 kW; 660 V 22–630 kW) (optional)


Figure C-2 Installation bracket of the keypad (380 V 37-315 kW; 660 V 22-630 kW) (standard)


C.3 VFD structure

C.4 Dimensions for VFDs of AC 3PH 380 V (-15%)-440 V (+10%)

C.4.1 Wall installation (unit: mm)

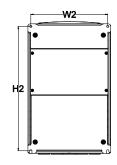
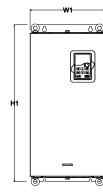
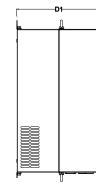
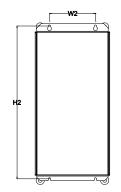





Figure C-3 Wall installation of 380 V 1.5-30 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
1.5 kW–2.2 kW	126	115	193	175	174.5	ø5	2
4 kW–5.5 kW	146	131	263	243.5	181	ø6	3.5
7.5 kW–11 kW	170	151	331.5	303.5	216	ø6	6
15 kW–18.5 kW	230	210	342	311	216	ø6	7.8
22 kW–30 kW	255	237	407	384	245	ø7	9.5

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
37 kW–55 kW	270	130	555	540	325	ø7	30
75 kW–110 kW	325	200	680	661	365	ø9.5	47

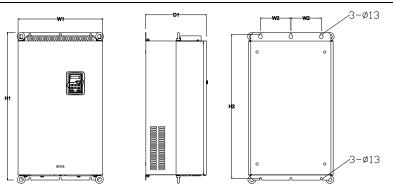


Figure C-5 Wall installation of 380 V 132-200 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
132 kW–200 kW	500	180	870	850	360	ø11	85

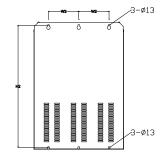
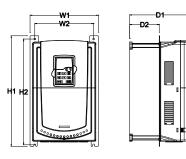



Figure C-6 Wall installation of 380 V 220-315 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
220 kW–280 kW	680	230	960	926	380	ø13	135
315 kW	680	230	960	926	380	ø13	137

C.4.2 Flange installation (unit: mm)

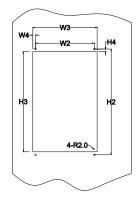
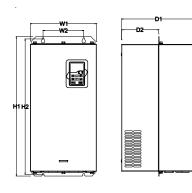



Figure C-7 Flange installation of 380 V 1.5-30 kW VFDs

Model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Installation hole	Weight (kg)
1.5 kW–2.2 kW	150	115	130	7.5	234	220	190	16.5	174.5	65.5	ø5	2
4 kW–5.5 kW	170	131	150	9.5	292	276	260	10	181	79.5	ø6	3.5
7.5 kW–11 kW	191	151	174	11.5	370	351	324	15	216.2	113	ø6	6
15 kW–18.5 kW	250	210	234	12	375	356	334	10	216	108	ø6	7.8
22 kW–30 kW	275	237	259	11	445	426	404	10	245	119	ø7	9.5

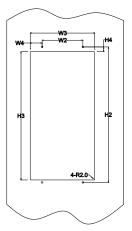


Figure C-8 Flange installation of 380 V 37-110 kW VFDs

Dimension drawings

Goodrive35 Series Closed-loop Vector Control VFD

Model	W 1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Installation hole	Weight (kg)
37 kW–55 kW	270	130	261	65.5	555	540	516	17	325	167	ø7	30
75 kW–110 kW	325	200	317	58.5	680	661	626	23	363	182	ø9.5	47

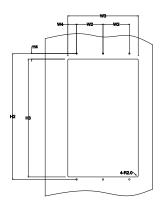


Figure C-9 Flange installation of 380 V 132-200 kW VFDs

Model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Installation hole	Weight (kg)
132 kW–200 kW	500	180	480	60	870	850	796	37	358	178.5	ø11	85

C.4.3 Floor installation (unit: mm)

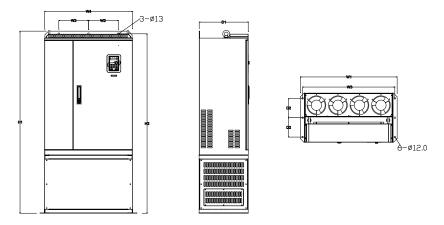


Figure C-10 Floor installation of 380 V 220-315 kW VFDs

Model	W1	W2	W3	W4	H1	H2	D1	D2	Installation hole	Weight (kg)
220 kW–280 kW	750	230	714	680	1410	1390	380	150	ø13/12	135
315 kW	750	230	714	680	1410	1390	380	150	ø13/12	137

C.5 Dimensions for VFDs of AC 3PH 520 V (-15%)-690 V (+10%)

C.5.1 Wall installation (unit: mm)

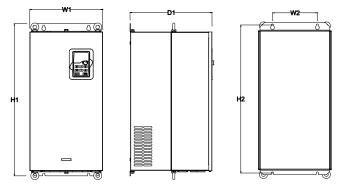


Figure C-11 Wall installation of 660 V 22-132 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
22 kW–45 kW	270	130	555	540	325	ø7	30
55 kW–132 kW	325	200	680	661	365	ø9.5	47
132 kW	325	200	680	661	365	ø9.5	85

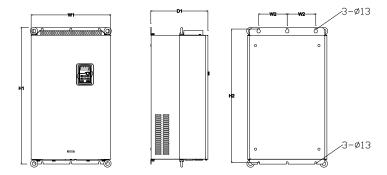


Figure C-12 Wall installation of 660 V 160-220 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
160 kW–220 kW	500	180	870	850	360	ø11	85

Dimension drawings

Goodrive35 Series Closed-loop Vector Control VFD

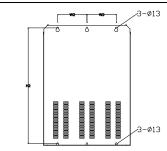
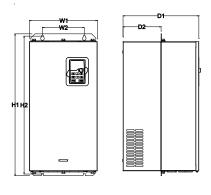



Figure C-13 Wall installation of 660 V 250-350 kW VFDs

Model	W1	W2	H1	H2	D1	Installation hole	Weight (kg)
250 kW–350 kW	680	230	960	926	380	ø13	135

C.5.2 Flange installation (unit: mm)

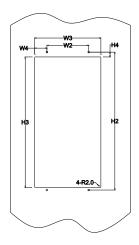


Figure C-14 Flange installation of 660 V 22-132 kW VFDs

Model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Installation hole	Weight (kg)
22 kW–45 kW	270	130	261	65.5	555	540	516	17	325	167	ø7	30
55 kW–110 kW	325	200	317	58.5	680	661	626	23	363	182	ø9.5	47
132 kW	325	200	317	58.5	680	661	626	23	363	182	ø9.5	85

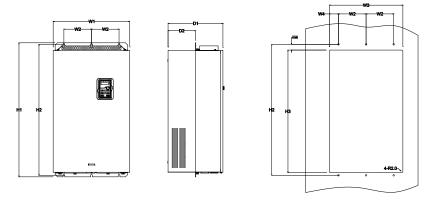


Figure C-15 Flange installation of 660 V 160-220 kW VFDs

Model	W1	W2	W3	W4	H1	H2	H3	НΔ	D1	D2	Installation	Weight
mouor	••••			•	•••	•••			5.	21	hole	(kg)
160 kW–220 kW	500	180	480	60	870	850	796	37	358	178.5	ø11	85

C.5.3 Floor installation (unit: mm)

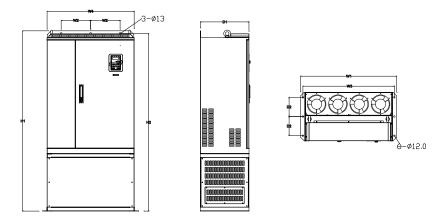


Figure C-16 Floor installation of 660 V 250-350 kW VFDs

Model	W1	W2	W3	W4	H1	H2	D1	D2	Installation hole	Weight (kg)
250 kW–350 kW	750	230	714	680	1410	1390	380	150	ø13/12	135

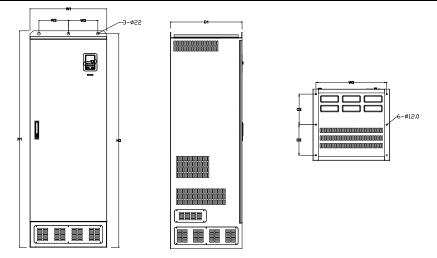
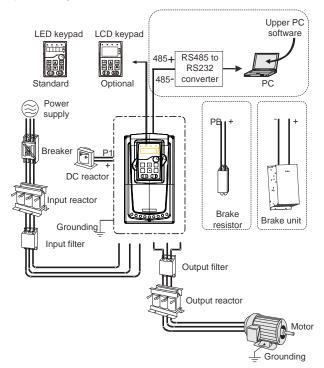


Figure C-17 Floor installation of 660 V 400-630 kW VFDs

Model	W1	W2	W3	W4	H1	H2	D1	D2	Installation hole	Weight (kg)
400 kW–630 kV	V 620	230	573	/	1700	1678	560	240	ø22/12	390


Appendix D Optional peripheral accessories

D.1 What this chapter contains

This chapter describes how to select the options and parts of Goodrive35 series.

D.2 Peripheral wiring

Below is the peripheral wiring of Goodrive35 series VFDs.

Note:

- ♦ Built-in braking unit is included for 380 V 30 kW and below models;
- P1 terminal is included for 380 V 37 kW and above models, which can be connected to external DC reactor directly;
- P1 terminal is included for 660 V and above models, which can be connected to external DC reactor directly;
- The braking units INVT's DBU series standard braking units. For details, see the DBU operation manual.

Optional peripheral accessories

Pictures	Name	Descriptions					
	Cables	Device to transfer the electronic signals					
	Breaker	Prevent from electric shock and protect the power supply and the cables system from overcurrent wher short circuits occur. (Please select the breaker with the function of reducing high order harmonic and the rated sensitive current to 1 VFD should be above 30mA).					
	Input reactor	This device is used to improve the power factor of the input side of the VFD and control the higher harmonic current. The VFDs of 380 V (≥37 kW) and of 660 V have external DC reactors.					
	DC reactor						
	Input filter	Control the electromagnetic interference generated from the VFD, please install close to the input termina side of the VFD. Accessory that restricts the electromagnetic interference generated by the VFD and transmitted to the public grid through the power cable. Try to instal the input filter near the input terminal side of the VFD					
or	Braking unit or braking resistors	Accessories used to consume the regenerative energy of the motor to reduce the deceleration time. VFDs of 380 V, 30 kW or lower need only to be configured with braking resistors, those of 380V, 37 kW or higher and 660 V series also need to be configured with braking units,.					
600	Output filter	Control the interference from the output side of the VFD and please install close to the output terminals of the VFD.					
(E)	Output reactor	Prolong the effective transmitting distance of the VFD to control the sudden high voltage when switching on/off the IGBT of the VFD.					

D.3 Power supply

Please refer to 3.6.1 "Rated value of AC 3PH 520 V (-15%)-690 V (+10%)".

Check that the voltage degree of the VFD complies with that of the grid.