

Operation Manual

Goodrive350-19 Series VFD for Crane

SHENZHEN INVT ELECTRIC CO., LTD.

No.	Change description	Version	Release date	
1	First release	V1.0	March 2020	
	 Added section 5.2.5 Switching from lifting in closed-loop vector control to open-loop vector control. 			
	 Added section 5.5 Tower crane rotating without vortex in space voltage vector control. 			
	Added section 5.11 Brake.			
	Added section 5.12 Zero servo.			
	Added section 5.13 Anti-sway.		April 2021	
	Added section 5.14.4 Master/slave switchover.			
2	Changed group P29 to group P89.	V1.1		
	Added groups P85, P86, and P94.			
	 Added chapter 11 CW and SW module for port crane applications. 			
	 Added sectionA.5.6 CAN-NET two-in-one communication card (EC-TX511B). 			
	Added the rope tracking function to group P91.			
	 Added overspeed protection, stalling protection, and weighing functions to P92. 			
	Updated P90.00 application macro.			

Preface

Thank you for choosing Goodrive350-19 series variable-frequency drive (VFD) for cranes.

If not otherwise specified in this manual, the VFD always indicates Goodrive350-19 series VFD, which is a new generation of VFD that INVT develops for cranes by using advanced control technologies based on more than ten-year accumulative hoisting-industry experience. The VFD achieves excellent torque performance by integrating various special functions, including brake control, zero servo, quick stop, master/slave control, switchover between three sets of motor parameters, pre-magnetizing, light-load speed acceleration, anti-sway for the trolley and long travel, tower crane slewing without vortex, reverse braking, rope detection, and travel limit, to ensure the safety, reliability, and high efficiency of the machinery. The VFD can be widely used to drive the mechanisms such as about lifting, tilting, luffing, cross traveling, long traveling, slewing, and grabbing in hoisting machinery.

In order to meet diversified customer demands, the VFD provides abundant expansion cards including hoisting-oriented process card, PG card, communication card and I/O card to achieve various functions as needed. Each VFD can be installed with three expansion cards at most.

The PG card supports a variety of common encoders including incremental encoders and resolver-type encoders. In addition, it also supports pulse reference and frequency-division output. The PG card adopts digital filter technology to improve EMC performance and to realize stable transmission of the encoder signal over a long distance. It is equipped with the encoder disconnection detection function to contain the impact of system faults.

The VFD supports mainstream bus and control automation communication modes, including Modbus, CANopen, PROFIBUS-DP, PROFINET, and EtherCAT, and thus can be seamlessly interconnected with various hoist control systems. It can be connected to the Internet with wireless communication cards, by which you can monitor the VFD state anywhere any time through mobile APP.

The VFD uses high power density design. The VFD models in some power ranges carry built-in DC reactors and braking units to save installation space. Through overall EMC design, the VFD can satisfy the low noise and low electromagnetic interference requirements to cope with challenging grid, temperature, humidity and dust conditions, thus greatly improving product reliability.

This manual instructs you how to install, wire, set parameters for, diagnose and remove faults for, and maintain the VFD, and also lists related precautions. Before installing the VFD, read through this manual carefully to ensure the proper installation and running with the excellent performance and powerful functions into full play.

If the product is ultimately used for military affairs or weapon manufacture, comply with the export control regulations in the Foreign Trade Law of the People's Republic of China and complete related formalities.

The manual is subject to change without prior notice.

Contents

Preface	i
Contents	
1 Safety precautions	1
1.1 What this chapter contains	1
1.2 Safety definition	1
1.3 Warning	1
1.4 Safety guidelines	2
1.4.1 Delivery and installation	2
1.4.2 Commissioning and running	3
1.4.3 Maintenance and component replacement	4
1.4.4 Disposal	
2 Quick startup	5
2.1 What this chapter contains	5
2.2 Unpacking inspection	5
2.3 Checking before use	5
2.4 Environment checking	5
2.5 Checking after installation	6
2.6 Basic commissioning	6
3 Product overview	7
3.1 What this chapter contains	7
3.2 Basic principles	7
3.3 Product specifications	9
3.4 Product nameplate	15
3.5 Model designation code	16
3.6 Product ratings	16
3.7 Structure	18
4 Installation guidelines	20
4.1 What this chapter contains	20
4.2 Mechanical installation	20
4.2.1 Installation environment	20
4.2.2 Installation direction	21
4.2.3 Installation method	22
4.2.4 Installing one VFD	23
4.2.5 Installing multiple VFDs	23
4.2.6 Vertical installation	24
4.2.7 Tilted installation	25
4.3 Standard wiring of the main circuit	26
4.3.1 Wiring diagram of the main circuit	26

4.3.2 Main circuit terminal diagram	27
4.3.3 Wiring procedure for main circuit terminals	31
4.4 Standard wiring of the control circuit	32
4.4.1 Wiring diagram of basic control circuit	32
4.4.2 Input/output signal connection diagram	34
4.4.3 Control circuit wiring of I/O expansion card 2	36
4.5 Wiring protection	37
4.5.1 Protecting the VFD and input power cable in case of short circuit	37
4.5.2 Protecting the motor and motor cable in case of short circuit	38
4.5.3 Protecting the motor against thermal overload	38
4.5.4 Bypass connection	38
5 Commissioning guidelines	39
5.1 Lifting in open-loop vector control	39
5.1.1 Wiring	39
5.1.2 Commissioning procedure	39
5.1.3 Macro parameters (P90.00=1)	40
5.1.4 Points for attention	41
5.2 Lifting in closed-loop vector control	42
5.2.1 Wiring	42
5.2.2 Commissioning procedure	42
5.2.3 Macro parameters (P90.00=2)	43
5.2.4 Points for attention	45
5.2.5 Switching from lifting in closed-loop vector control to open-loop vector control	45
5.3 Horizontal moving	46
5.3.1 Wiring	46
5.3.2 Commissioning procedure	47
5.3.3 Macro parameters (P90.00=3)	47
5.3.4 Points for attention	48
5.4 Tower crane slewing with vortex	48
5.4.1 Wiring	48
5.4.2 Commissioning procedure	
5.4.3 Macro parameters (P90.00=4)	49
5.4.4 Points for attention	50
5.4.5 Controlling the vortex module through the HDO terminal	50
5.4.6 Controlling the vortex module through the AO terminal	52
5.5 Tower crane rotating without vortex in space voltage vector control	
5.5.1 Wiring	
5.5.2 Commissioning procedure	54
5.5.3 Macro parameters (P90.00=15)	54
5.5.4 Points for attention	56

5.6 Conical motor function	. 56
5.6.1 Wiring	. 56
5.6.2 Commissioning procedure	. 56
5.6.3 Macro parameters (P90.00=5)	. 57
5.6.4 Points for attention	. 57
5.7 Lifting in space voltage vector control	. 58
5.7.1 Wiring	. 58
5.7.2 Commissioning procedure	. 58
5.7.3 Macro parameters (P90.00=9)	. 59
5.7.4 Points for attention	.60
5.8 Winching in closed-loop vector control (applicable to lifting in mineral wells and winches).	. 61
5.8.1 Wiring	.61
5.8.2 Commissioning procedure	. 62
5.8.3 Macro parameters (P90.00=11)	. 62
5.8.4 Points for attention	. 65
5.8.5 How to use the -10-+10V analog operating lever	. 65
5.9 Winching in open-loop vector control (applicable to lifting in mineral wells and winches)	.66
5.9.1 Wiring	.66
5.9.2 Commissioning procedure	. 67
5.9.3 Macro parameters (P90.00=12)	. 67
5.9.4 Points for attention	. 69
5.10 Electric potentiometer	.70
5.10.1 Wiring	.70
5.10.2 Commissioning procedure	.70
5.10.3 Electric potentiometer commissioning parameters	.71
5.11 Brake	. 72
5.11.1 Brake function in space voltage vector control	. 72
5.11.2 Brake function in open/closed-loop vector control	76
5.11.3 Description about torque verification and brake slip	.77
5.11.4 Commissioning parameters	.79
5.11.5 Brake function in torque control	. 81
5.12 Zero servo	. 85
5.12.1 Zero servo function description	. 85
5.12.2 Zero servo function codes	. 87
5.13 Anti-sway	. 90
5.13.1 Wiring	. 91
5.13.2 Commissioning procedure of the anti-sway function for tower cranes	. 91
5.13.3 Commissioning procedure of the anti-sway function for factory cranes	. 91
5.13.4 Macro parameters	. 91
5.14 Master/slave control	. 94

5.14.1 Function description	
5.14.2 Terminal master/slave function	
5.14.3 Master/slave communication	
5.14.4 Master/slave switchover	
5.14.5 User-defined application macros	
5.15 Motor and macro switchover	112
5.15.1 Function description	112
5.15.2 Description about switching from motor 2 to motor 3	112
5.15.3 Motor and macro switchover parameters	113
5.15.4 Motor and macro switchover flowchart	115
5.16 Height measuring	116
5.16.1 Commissioning description	116
5.16.2 Parameters about height measuring	
5.17 Temperature measuring	
5.17.1 Using PT100/PT100	
5.17.2 Using KTY84	
6 Basic operation guidelines	
6.1 What this chapter contains	
6.2 Keypad introduction	
6.3 Keypad display	
6.3.1 Displaying fault information	
6.3.2 Editing function codes	
6.4 Operation procedure	
6.4.1 Modifying function codes	
6.4.2 Setting a password for the VFD	
6.4.3 Viewing VFD status	
6.5 Basic operation description	
6.5.1 What this section describes	
6.5.2 Common commissioning procedure	
6.5.3 Vector control	
6.5.4 Space voltage vector control mode	
6.5.5 Torque control	
6.5.6 Motor parameters	
6.5.7 Start/stop control	
6.5.8 Frequency setting	
6.5.9 Analog input	
6.5.10 Analog output	
6.5.11 Digital input	
6.5.12 Digital output	
6.5.13 Simple PLC	

6.5.14 Multi-step speed running	189
6.5.15 Graded multi-step speed reference	191
6.5.16 Local encoder input	192
6.5.17 Commissioning procedures for position control and spindle positioning	193
6.5.18 Fault handling	199
7 Function parameter list	205
7.1 What this chapter contains	205
7.2 Function parameter list	205
P00 group—Basic functions	206
P01 group—Start and stop control	210
P02 group—Parameters of motor 1	216
P03 group—Vector control of motor 1	220
P04 group—V/F control	226
P05 group—Input terminals	235
P06 group—Output terminals	244
P07 group—Human-machine interface	249
P08 group—Enhanced functions	257
P09 group— PID control	264
P10 group—Simple PLC and multi-step speed control	269
P11 group—Protection parameters	272
P12 group—Parameters of motor 2	279
P13 group—SM control	282
P14 group—Serial communication	284
P15 group—Communication expansion card 1 functions	286
P16 group—Communication expansion card 2 functions	286
P17 group—Status viewing	287
P18 group—Status viewing in closed-loop control	292
P19 group—Expansion card status viewing	294
P20 group—Encoder of motor 1	295
P21 group—Position control	299
P22 group—Spindle positioning	307
P23 group—Vector control of motor 2	310
P24 group—Encoder of motor 2	312
P25 group—I/O card input functions	316
P26 group—I/O card output functions	318
P28 group—Master/slave control	320
P85 group—Anti-sway control	323
P86 group—Slewing control	324
P89 group—Parameters of motor 3	326
P90 group—Functions special for cranes	329

P91 group—Functions special for cranes	339
P92 group—Hoisting protection function group 3	353
P93 group—Closed-loop hoisting functions	362
P94 group—Hoisting status display	371
8 Troubleshooting	375
8.1 What this chapter contains	375
8.2 Indications of alarms and faults	375
8.3 Fault reset	375
8.4 Fault history	375
8.5 Faults and alarms	375
8.5.1 Faults and solutions	375
8.5.2 Alarms and solutions	385
8.5.3 ther status	387
8.6 Analysis on common faults	387
8.6.1 Motor fails to work	387
8.6.2 Motor vibrates	388
8.6.3 Overvoltage	389
8.6.4 Undervoltage	389
8.6.5 Motor overheating	390
8.6.6 VFD overheating	391
8.6.7 Motor stalls during ACC	392
8.6.8 Overcurrent	393
8.7 Countermeasures on common interference	393
8.7.1 Interference on meter switches and sensors	393
8.7.2 Interference on RS485 communication	394
8.7.3 Failure to stop and indicator shimmering due to motor cable coupling	395
8.7.4 Leakage current and interference on RCD	396
8.7.5 Live device chassis	397
9 Maintenance	398
9.1 What this chapter contains	398
9.2 Periodical inspection	398
9.3 Cooling fan	401
9.4 Capacitor	402
9.4.1 Capacitor reforming	402
9.4.2 Electrolytic capacitor replacement	403
9.5 Power cable	403
10 Communication protocol	404
10.1 What this chapter contains	404
10.2 Modbus protocol introduction	404
10.3 Application of Modbus	404

10.3.1 RS485	404
10.3.2 RTU	407
10.4 RTU command code and communication data	410
10.4.1 Command code 03H, reading N words (continuously up to 16 words)	410
10.4.2 Command code 06H, writing a word	412
10.4.3 Command code 08H, diagnosis	413
10.4.4 Command code 10H, continuous writing	414
10.4.5 Data address definition	415
10.4.6 Fieldbus scale	419
10.4.7 Error message response	420
10.4.8 Read/Write operation examples	422
10.4.9 Common communication faults	426
11 CW and SW module for port crane applications	427
11.1 CWs for port crane applications	427
11.2 SWs for port crane applications	428
11.3 CANopen/PROFIBUS PZD communication	428
11.4 PROFINET PZD communication	431
Appendix A Expansion card	434
A.1 Model definition	434
A.2 Dimensions and installation	440
A.3 Wiring	442
A.4 Function description of I/O expansion card 1 (EC-IO501-00)	443
A.5 Communication cards	445
A.5.1 Bluetooth communication card (EC-TX501) and WIFI communication card (EC-TX	X502)
	445
A.5.2 PROFIBUS-DP communication card (EC-TX503)	447
A.5.3 Ethernet communication card (EC-TX504)	448
A.5.4 CANopen communication card (EC-TX511) and CAN master/slave c	
communication card (EC-TX511)	449
A.5.5 PROFINET communication card (EC-TX509)	451
A.5.6 CAN-NET two-in-one communication card (EC-TX511B)	453
A.6 PG expansion cards	454
A.6.1 Sin/Cos PG card (EC-PG502)	454
A.6.2 UVW incremental PG card (EC-PG503-05)	457
A.6.3 Resolver PG card (EC-PG504-00)	459
A.6.4 Multi-function incremental PG card (EC-PG505-12)	
A.6.5 Simplified incremental PG card (EC-PG507-12)	465
A.6.6 24V simplified incremental PG card (EC-PG507-24)	
Appendix B Technical data	471
B.1 What this chapter contains	471

	B.2 Derated application	471
	B.2.1 Capacity	471
	B.2.2 Derating	471
	B.3 Grid specifications	472
	B.4 Motor connection data	472
	B.5 Application standards	472
	B.5.1 CE marking	473
	B.5.2 EMC compliance declaration	473
	B.6 EMC regulations	473
	B.6.1 VFD category of C2	474
	B.6.2 VFD category of C3	474
Ap	pendix C Dimension drawings	475
	C.1 What this chapter contains	475
	C.2 LED keypad	475
	C.2.1 Structure diagram	475
	C.2.2 Keypad mounting bracket	475
	C.3 LCD keypad	476
	C.3.1 Structure diagram	476
	C.3.2 Keypad mounting bracket	476
	C.4 VFD structure	477
	C.5 Dimensions of AC 3PH 380V (-15%)-440V (+10%)	478
	C.5.1 Wall mounting dimensions	478
	C.5.2 Flange installation dimensions	480
	C.5.3 Floor installation dimensions	482
	C.6 Dimensions of AC 3PH 520V (-15%)–690V (+10%)	483
	C.6.1 Wall mounting dimensions	483
	C.6.2 Flange installation dimensions	484
	C.6.3 Floor installation dimensions	485
Ap	pendix D Optional peripheral accessories	487
	D.1 What this chapter contains	487
	D.2 Wiring of peripheral accessories	487
	D.3 LCD keypad	488
	D.4 Power supply	489
	D.5 Cable	489
	D.5.1 Powe cable	489
	D.5.2 Control cables	490
	D.5.3 Recommended cable size	491
	D.5.4 Cable arrangement	493
	D.5.5 Insulation inspection	494
	D.6 Breaker and electromagnetic contactor	

D.7 Reactor	496
D.8 Filters	
D.8.1 Filter model description	
D.8.2 Filter model selection	
D.9 Braking system	
D.9.1 Braking component selection	
D.9.2 Braking resistor cable selection	
D.9.3 Braking resistor installation	
D.10 Regenerative feedback unit	
D.10.1 Installation wiring for regenerative feedback unit	
D.10.2 Regenerative feedback unit model selection	
Appendix E STO function description	
E.1 STO function logic table	
E.2 STO channel delay description	
E.3 STO function installation checklist	
Appendix F Further information	
F.1 Product and service queries	
F.2 Feedback on INVT VFD manuals	
F.3 Documents on the Internet	

1 Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Otherwise, equipment damage or physical injury or death may be caused.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to your or your customers' failure to follow the safety precautions.

1.2 Safety definition

Danger: Severe personal injury or even death can result if related requirements are not followed.

Warning: Personal injury or equipment damage can result if related requirements are not followed.

Note: Actions taken to ensure proper running.

Trained and qualified professionals: People operating the equipment must have received professional electrical and safety training and obtained the certificates, and must be familiar with all steps and requirements of equipment installing, commissioning, running and maintaining and capable to prevent any emergencies.

1.3 Warning

Warnings caution you about conditions that can result in severe injury or death and/or equipment damage and advice on how to prevent dangers. The following table lists the warning symbols in this manual.

Symbol	Name	Description	Abbreviation
Danger Danger		Severe personal injury or even death can result if related requirements are not followed.	
Marning	Warning Warnin		
Forbid	Forbid Electrostatic The PCBA may be damaged if related requirements are not followed.		
Note Do not touch. The VFI Hot Hot sides		Do not touch. The VFD base may become hot.	
5 min Electric shock		As high voltage still presents in the bus capacitor after power off, wait for at least five minutes (or 15 min / 25 min, depending on the warning symbols on the machine) after power off to prevent electric shock.	<u>∧</u> ⊘ 5 min
	Read manual Read the operation manual before operating.		
Note Note Actions taken to ensure proper running.		Note	

1.4 Safet	y gu	ide	lines			
	\$ \$	op Do is wir the	erations. o not perform wir applied. Ensure ring or inspection	ing, inspection or compor all the input power supp n, and wait for at least the	are allowed to carry out re nent replacement when power s blies have been disconnected b e time designated on the VFD of minimum waiting time is listed i	upply before r until
<u>/</u> 7			۷	FD model	Minimum waiting time	
			380V	1.5kW–110kW	5 minutes	
			380V	132kW–315kW	15 minutes	
			380V	>355kW	25 minutes	
			660V	22kW–132kW	5 minutes	
			660V	160kW–355kW	15 minutes	
			660V	400kW-630kW	25 minutes	
	¢		o not refit the VF ury may result.	D unless authorized; othe	erwise fire, electric shock or othe	er
		The base may become hot when the machine is running. Do not touch. Otherwise, you may get burnt.				
		The electrical parts and components inside the VFD are electrostatic sensitive.				
		Take measurements to prevent electrostatic discharge when performing related				
		ор	erations.			

1.4.1 Delivery and installation

	¢	Do not install the VFD on inflammables. In addition, prevent the VFD from
		contacting or adhering to inflammables.
	\diamond	Connect the optional braking parts (such as braking resistors, braking units or
		feedback units) according to the wiring diagrams.
	\diamond	Do not run the VFD if it is damaged or incomplete.
	\diamond	Do not contact the VFD with damp objects or body parts. Otherwise, electric
		shock may result.

Note:

- Select appropriate tools for VFD delivery and installation to ensure the safe and proper running and avoid physical injury or death. To ensure personal safety, take mechanical protective measures like wearing safety shoes and working uniforms.
- Protect the VFD against physical shock or vibration during the delivery and installation.
- Do not carry the VFD only by its front cover as the cover may fall off.
- The installation site must be away from children and other public places.

- Use the VFD in proper environments. (For details, see section 4.2.1 Installation environment.)
- Prevent the screws, cables and other conductive parts from falling into the VFD.
- As VFD leakage current caused during running may exceed 3.5mA, apply reliable grounding and ensure the ground resistance is less than 10Ω. The PE ground conductor and phase conductor have equal conductivity capability. For the models of 30kW and higher, the cross sectional area of the PE ground conductor can be slightly less than the recommended area.
- R, S and T are the power input terminals, and U, V and W are the output motor terminals. Connect the input power cables and motor cables properly; otherwise, damage to the VFD may occur.

1.4.2 Commissioning and running

	¢	Cut off all power supplies connected to the VFD before terminal wiring, and wait				
		for at least the time designated on the VFD after disconnecting the power				
		supplies.				
	\diamond	High voltage presents inside the VFD during running. Do not carry out any				
		operation on the VFD during running except for keypad setup. For 3PH AC 660V				
		VFD models, the control terminals form extra-low voltage (ELV) circuits.				
		Therefore, you need to prevent the control terminals from connecting to				
		accessible terminals of other devices.				
	\diamond	The VFD may start up by itself when P01.21 is set to 1 (restart after power off).				
		Do not get close to the VFD and motor.				
	∻	The VFD cannot be used as an "Emergency-stop device".				
	∻	The VFD cannot act as an emergency brake for the motor; it is a must to install a				
		mechanical braking device.				
4	\diamond	During driving a permanent magnet synchronous motor (SM), besides				
		above-mentioned items, the following work must be done before installation and				
		maintenance:				
		a) All input power supplies have been disconnected, including the main power				
		and control power.				
		b) The permanent-magnet SM has been stopped, and the voltage on output				
		end of the VFD is lower than 36V.				
		c) After the permanent-magnet SM has stopped, wait for at least the time				
		designated on the VFD, and ensure the voltage between + and - is lower				
		than 36V.				
		d) During operation, it is a must to ensure the permanent-magnet SM cannot				
		run again by the action of external load; it is recommended to install an				
		effective external braking device or cut off the direct electrical connection				
		between the permanent-magnet SM and the VFD.				

Note:

- Do not switch on or switch off the input power supplies of the VFD frequently.
- If the VFD has been stored without use for a long time, perform capacitor reforming (described in chapter 9 Maintenance), inspection and pilot run for the VFD before the reuse.
- Close the VFD front cover before running; otherwise, electric shock may occur.

1.4.3 Maintenance and component replacement

¢	Only trained and qualified professionals are allowed to perform maintenance,	
	inspection, and component replacement for the VFD.	ĺ
¢	Cut off all power supplies connected to the VFD before terminal wiring, and wait	

- Cut off all power supplies connected to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power supplies.
 - During maintenance and component replacement, take measures to prevent screws, cables and other conductive matters from falling into the internal of the VFD.

Note:

- Use proper torque to tighten screws. (For details, see D.5.3 Recommended cable size.)
- During maintenance and component replacement, keep the VFD and its parts and components away from combustible materials and ensure they have no combustible materials adhered.
- Do not carry out insulation voltage-endurance test on the VFD, or measure the control circuits of the VFD with a megohmmeter.
- During maintenance and component replacement, take proper anti-static measures on the VFD and its internal parts.

1.4.4 Disposal

	♦ The VFD contains heavy metals. Dispose of a scrap VFD as industrial waste.
Ŕ	Dispose of a scrap programmable controller separately at an appropriate collection point but not place it in the normal waste stream.

2 Quick startup

2.1 What this chapter contains

This chapter introduces the basic installation and commissioning rules that you need to follow to realize quick installation and commissioning.

2.2 Unpacking inspection

Check the following after receiving the product.

- Whether the packing box is damaged or dampened. If any problems are found, contact the local INVT dealer or office.
- Whether the model identifier on the exterior surface of the packing box is consistent with the purchased model.
- Whether the interior surface of the packing box is abnormal, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked.
- Whether the VFD nameplate is consistent with the model identifier on the exterior surface of the packing box.
- Whether the accessories (including the manual, keypad, and expansion card) inside the packing box are complete.

If any problems are found, contact the local INVT dealer or office.

2.3 Checking before use

Check the following before using the VFD.

- Mechanical type of the load to be driven by the VFD to verify whether the VFD will be overloaded during work. Whether the power class of the VFD needs to be increased.
- Whether the actual running current of the motor is less than the rated current of the VFD.
- Whether the control accuracy required by the load is the same as that is provided by the VFD.
- Whether the grid voltage is consistent with the rated voltage of the VFD.
- Check whether expansion cards are needed for selected functions.

2.4 Environment checking

Check the following before installing the VFD:

Note: When the VFD is built in a cabinet, the ambient temperature is the temperature of air in the cabinet.

- Whether the actual ambient temperature exceeds 40°C. When the temperature exceeds 40°C, derate 1% for every increase of 1°C. Do not use the VFD when the ambient temperature exceeds 50°C.
- Whether the actual ambient temperature is lower than -10°C. If the temperature is lower than -10°C, use heating devices.
- Whether the altitude of the application site exceeds 1000m. When the installation site altitude exceeds 1000 m, derate 1% for every increase of 100m.

- Whether the actual environment humidity exceeds 90% or condensation occurs. If yes, take
 additional protective measures.
- Whether there is direct sunlight or biological invasion in the environment where the VFD is to be used. If yes, take additional protective measures.
- Whether there is dust or inflammable and explosive gas in the environment where the VFD is to be used. If yes, take additional protective measures.

2.5 Checking after installation

Check the following after the VFD installation is complete.

- Whether the input power cables and motor cables meet the current-carrying capacity requirements of the actual load.
- Whether correct accessories are selected for the VFD, the accessories are correctly and properly installed, and the installation cables meet the capacity carrying requirements of all components (including the reactor, input filter, output reactor, output filter, DC reactor, braking unit and braking resistor).
- Whether the VFD is installed on non-flammable materials and the heat-radiating accessories (such as the reactor and braking resistor) are away from flammable materials.
- Whether all control cables and power cables are run separately and Whether the routing complies with EMC requirement.
- Whether all grounding systems are properly grounded according to the VFD requirements.
- Whether all the installation clearances of the VFD meet the requirements in the manual.
- Whether the installation mode conforms to the instructions in the operation manual. It is
 recommended that the VFD be installed uprightly.
- Whether the external connection terminals of the VFD are tightly fastened and the torque is appropriate.
- Whether there are screws, cables, or other conductive items left in the VFD. If yes, get them
 out.

2.6 Basic commissioning

Complete the basic commissioning as follows before the actual use of the VFD:

- According to the actual motor parameters, select the motor type, set motor parameters, and select the VFD control mode.
- Check whether autotuning is required. If possible, de-couple the VFD from the motor load to start dynamic parameter autotuning. If the VFD cannot be de-coupled from the load, perform static autotuning.
- Adjust the ACC/DEC time according to the actual work condition of the load.
- Perform commissioning by means of jogging and check whether the motor rotational direction is correct. If not, change the rotation direction by swapping any two motor phase wires.
- Set all control parameters and then perform actual run.

3 Product overview

3.1 What this chapter contains

This chapter mainly introduces the operation principles, product features, layouts, nameplates and model designation rules.

3.2 Basic principles

The VFD is used to control asynchronous AC induction motors and permanent-magnet synchronous motors. The following lists the main circuit diagrams of different VFD models. The rectifier converts 3PH AC voltage into DC voltage, and the capacitor bank of intermediate circuit stabilizes the DC voltage. The inverter converts DC voltage into AC voltage that can be used by an AC motor. When the circuit voltage exceeds the maximum limit value, external braking resistor will be connected to intermediate DC circuit to consume the feedback energy.

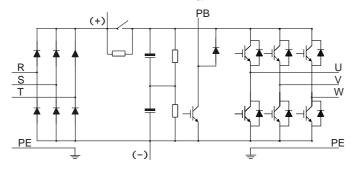


Figure 3-1 Main circuit diagram for 380V 15kW or lower VFD models

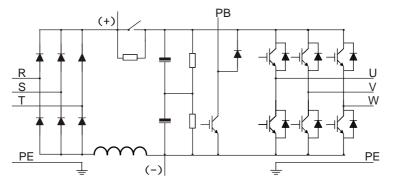


Figure 3-2 Main circuit diagram for 380V 18.5kW-110kW VFD models

Figure 3-3 Main circuit diagram for 380V 132kW or higher VFD models

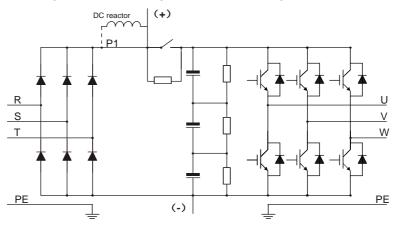


Figure 3-4 Main circuit diagram for 660V VFD models

Note:

- The 132kW and higher VFD models can be connected to external DC reactors. Before connection, remove the copper bar between P1 and (+). The 132kW and higher VFD models can be connected to external braking unit. DC reactors and braking units are optional parts.
- The 18.5kW–110kW (inclusive) VFD models are equipped with built-in DC reactors.
- The 110kW and lower VFD models carry built-in braking units. The models with built-in braking units can also be connected to external braking resistors. Braking resistors are optional parts.
- The 660V VFD models can be connected to external DC reactors. Before connection, remove the

copper bar between P1 and (+). These models can be connected to external braking unit. DC reactors and braking units are optional parts.

3.3 Product specifications

		Table 3-1 Product specifications
Description		Specifications
	Input voltage (V)	AC 3PH 380V (-15%)–440V(+10%); Rated voltage: 380V AC 3PH 520V (-15%)–690V(+10%); Rated voltage: 660V
_	Input current (A)	See section 3.6 Product ratings.
Power input	Input frequency (Hz)	50Hz or 60Hz; Allowed range: 47–63Hz
	Input power factor	30–110kW≥0.9
	Output voltage (V)	0–Input voltage (V)
	Output current (A)	See section 3.6 Product ratings.
Power output	Output power (kW)	See section 3.6 Product ratings.
	Output frequency (Hz)	0–150Hz
		Space voltage vector control mode
	Control mode	Sensorless vector control (SVC) mode
		Feedback vector control (FVC) mode
	Motor type	Asynchronous motor (AM) and permanent magnetic
		synchronous motor (SM)
	Speed ratio	1: 200 (SVC)
		1: 1000 (FVC)
	Speed control	± 0.2% (SVC)
Technical	accuracy	± 0.02% (FVC)
Technical	Cread fluctuation	± 0.3% (SVC)
control	Speed fluctuation	± 0.02% (FVC)
performance	_	< 20ms (SVC)
	Torque response	< 10ms (FVC)
	Torque control	10% (SVC)
	accuracy	5% (FVC)
		For AMs: 0.25Hz/150% (SVC)
	Starting torque	For SMs: 2.5Hz/150% (SVC)
		0Hz/200% (FVC)
	Overload capacity	150% for 1 minute, 180% for 10 seconds, and 200% for 1 second
	Braking capability	100% for long time, 120% for 1 minute, and 160% for 10 seconds
Running	Frequency setting	Settings can be implemented through digital, analog, pulse
control	method	frequency, multi-step speed running, simple PLC, PID, Modbus

Table 3-1	Product	specifications
	FIUUUUU	specifications

De	scription	Specifications				
performance		communication, PROFIBUS communication and so on. Settings				
		can be combined and the setting channels can be switched.				
	Automatic voltage	The output voltage can be kept constant although the grid				
	regulation	voltage changes.				
		More than 30 protection functions, such as protection against				
	Fault protection	overcurrent, overvoltage, undervoltage, overtemperature, phase				
		loss, and overload.				
		The 30–110 kW VFD models provide the function of protecting				
	Braking protection	against braking resistor short connection, braking unit short				
		connection, and PB-PE short connection.				
		Embedded with hoisting-oriented brake logic, and integrated with				
		the torque verifying, brake feedback, zero position detection,				
	Brake control	restart after braking functions, which meet the industrial				
		standards on the VFDs for cranes.				
		During startup, the magnetic flow is increased to release the				
	Conical motor	brake. During stop, the magnetic flow is decreased to close the				
	control	brake.				
	Light load speed boost	In closed-loop mode, the speed can be boosted and limited at				
		constant power status, and the speed is limited in stepped way.				
		In open-loop mode, if the simplified speed boost way is used, the				
		speed boosts to the set frequency in light load status; if the				
o ·		speed is boosted or limited in constant power status, the speed is				
Specialized		limited in stepped way.				
functions		In closed-loop mode, if the VFD detects load downward slip, the				
	Zero servo	VFD automatically enters the zero servo state and outputs a				
		brake failure alarm. When a level-2 fault occurs, if load				
		downward slip occurs, the VFD automatically resets the fault,				
		enters the zero servo state, and outputs a brake failure alarm.				
		The CAN master/slave control card has been configured for the				
		lifting, trolley, and long-travel mechanism VFDs to implement				
		communication. An encoder needs to be mounted for the lifting				
	Anti-sway	VFD so that the trolley and long-travel mechanism VFDs can				
	protection for the	obtain the run status and height from the lifting VFD. Then the				
	trolley and long	given frequency and ACC/DEC time are output based on the				
	travel	luffing and anti-sway algorithm. The trolley and long-travel				
		mechanism VFDs perform ACC/DEC run based on the				
		startup/stop command and given reference. In this way, the				
		stable state can be entered and swing disappears during stop.				

Description	Specifications			
Tower crane slewing without vortex	Embedded curves for tower crane slewing without vortex help to adjust the ACC in real time so that the torque is steady, which can suppress arm rebound and vibration when the arm pauses o stops.			
Loose rope protection (only in closed-loop mode)	Upward loose rope protection: If the speed limiting in loose rope state is detected, the speed limiting is canceled when timeout occurs or load is held. Downward loose rope protection: If the loose rope state is detected, the VFD reports a fault or alarm.			
Upward or downward position limit	The function is used to limit the crane to run within the specified range. The VFD enables emergency stop and reports an alarm once the range is exceeded.			
Upward or downward DEC position	When the deceleration signal is valid, the running speed of the crane is limited once the crane runs within the slow speed area. The function also features uni-directional speed limit. For example, only the upward running speed is limited when the crane runs within the upward slow speed area.			
Load position	In closed-loop mode, an encoder is used to obtain load position information.			
Master/slave control	Including power balance and speed synchronization between the master and slave.			
Hoisting application macro	Including lifting, horizontal moving, construction elevator, and tower crane slewing, and user-defined application macros.			
Lifting and horizontal moving switchover	Three groups of motor parameters, control modes, and application macros can be switched.			
Frequency decrease by voltage	When the bus voltage is continuously low, the reference frequency is decreased to keep the normal output torque of VFD.			
Low voltage protection	When the bus voltage decreases transiently or the VFD quickly stops due to power outage, the function is used to ensure the hook does not slip. The low voltage protection function is automatically disabled once the bus voltage restores to the normal state.			
Low-speed run protection	The VFD reports the low-speed run protection fault when the low-speed run time exceeds the allowed time. The prevents the axial cooling motor from being damaged due to overheating caused by long-time running.			

Description		Specifications			
	Overload protection	In closed-loop mode, when overload occurs, upward lifting is restricted.			
	Vortex control	The HDO outputs PWM waves to directly control vortex.			
		When the brake control signal is inconsistent with the brake			
	Brake feedback	feedback signal, the VFD handles the inconsistency according to			
		the brake status to ensure safety.			
	Zero position	The zero position signal and running signal are mutually			
	detection	exclusive.			
	Torque verification	The VFD verifies the current or torque before brake release. The VFD performs brake release when the verification succeeds, and the VFD reports the verification fault when the verification fails			
	One key open/closed loop switchover	the VFD reports the verification fault when the verification fails. The closed-loop control mode can be switched to the open-loop control mode through terminals. When the encoder is faulty, the open-loop control mode can be used. The switchover can get response only in stopped state but not in running state.			
	Jogging	After receiving a jogging command, the VFD can automatically start, run, and stop at the preset running frequency and time according to the settings. During the process, the brake can be normally opened or closed under the control of VFD, ensuring the stability without hook slip or exception when the crane starts or stops.			
	Smooth lifting	In high-speed lifting mode, the high speed is limited at the moment of steel rope straightening, reducing the impact caused by the sudden load to the crane at the lifting start.			
	Set frequency exception protection	If the set frequency is lower than the threshold after the brake is opened, the VFD reports the set frequency exception, which prevents slip caused by insufficient force at low speed.			
	Motor overheat	The I/O expansion card can receive motor temperature sensor			
	protection	input (PT100, PT1000 and PTC).			
	Terminal analog input resolution	No more than 20mV			
	Terminal digital input resolution	No more than 2ms			
Peripheral	Analog input	2 inputs; AI1: 0–10V/0–20mA; AI2: -10–10V			
interface	Analog output	1 input; AO1: 0–10V/0–20mA			
	Digital input	Four regular inputs; max. frequency: 1kHz; internal impedance: 3.3kΩ Two high-speed inputs; max. frequency: 50kHz; supporting			

Description		Specifications		
		quadrature encoder input; with speed measurement function		
		One high-speed pulse output; max. frequency: 50kHz		
	Digital output	One Y terminal open collector output		
		Two programmable relay outputs		
		RO1A: NO; RO1B: NC; RO1C: common		
	Relay output	RO2A: NO; RO2B: NC; RO2C: common		
		Contact capacity: 3A/250VAC, 1A/30VDC		
		Three extended interfaces: SLOT1, SLOT2, and SLOT3		
		Supporting PG cards, programmable expansion cards,		
		communication cards, I/O cards and so on		
	Extended	Note:		
	interfaces	1. You can install optional expansion cards for 1.5–5.5kW VFD		
		models and you are recommended to install them at slot 2.		
		2. I/O expansion card 2 has been installed at slot 3 for 7.5kW and		
		higher VFD models as standard configuration.		
		Two programmable relay outputs. Contact capacity: 3A/250VAC,		
	Relay output	1A/30VDC		
		RO3A: NO; RO3C: common; RO4A: NO; RO4C: common		
		Three regular inputs		
		Internal impedance: 6.6kΩ		
		Max. input frequency: 1kHz		
		Supporting the internal power 24V		
I/O	Digital input	Supporting the voltage input of external power		
Expansion	Digital input	(-20%)24-48VDC(+10%) and (-10%)24-48VAC(+10%)		
card 2		Bidirectional input terminals, simultaneously supporting NPN and		
caru z		PNP connection methods		
		One channel supports PTC input, while PTC acts at 2.5k Ω , and		
		supports the input of only dry contacts sharing COM		
	DT100 input	Independent PT100 and PT1000 input:		
	PT100 input	1. Resolution: 1°C		
		2. Range: -20°C–150°C		
	PT1000 input	3. Detection precision: ±3°C		
		4. Supporting offline protection		
	Installation method	Supports wall-mounting, floor-mounting and flange-mounting.		
Other	Temperature of	-10°C – 50°C; Derating is required if the ambient temperature		
	running	exceeds 40°C.		
	environment	0.00000 +0 0.		

Des	scription	Specifications
	IP rating	IP20
	Pollution degree	Degree 2
	Cooling method	Forced air cooling
		Standard built-in part for 380V 18.5–110kW VFD models.
	DC reactor	Optional external part for 380V 132kW and higher models and for
		660V models.
	Braking unit	Standard built-in part for 380V 110kW and lower VFD models.
		Optional external part for 660V models.
	EMC filter	C3 filters are optional parts and can be built in the VFD.
		If a C3 filter is required, connect the jumper J10. After the C3
		filter is configured, the VFD can meet IEC61800-3 C3
		requirements.
		Optional external filters can be used to meet the IEC61800-3 C2
		requirements.

Table 3-2 Specialized functions

Function			Control mode		
		Mode	V/F	SVC	FVC
		Brake control in speed mode	\checkmark	\checkmark	
		Restart after braking	\checkmark	\checkmark	\checkmark
		Brake feedback	\checkmark	\checkmark	
		Zero position detection	\checkmark		
		Current verification	\checkmark	\checkmark	
	Brake control	Torque verification			
		Brake slip verification			
		Speed deviation detection	\checkmark		
Creatiolized		Jogging	\checkmark		
Specialized functions		Set frequency exception protection	\checkmark	\checkmark	\checkmark
Turictions		Brake control in torque mode			
	Torque control	Torque control		\checkmark	\checkmark
		Pre torque			
	Conical motor	Conical motor control	\checkmark		
		Simplified speed boost mode	\checkmark		
	Light load speed	Constant power speed boost	\checkmark	\checkmark	\checkmark
	boost	Constant power speed limit	\checkmark	\checkmark	
		Stepped speed limit	\checkmark	\checkmark	
	Sofoty functions	STO	\checkmark	\checkmark	\checkmark
	Safety functions	Zero servo			\checkmark

Function Control mode				node	
		Loose rope protection			
		Stable lifting protection			
		Upward or downward position limit	\checkmark	\checkmark	\checkmark
		Upward or downward DEC position			al
		limit	v	v	v
		Overload protection	\checkmark	\checkmark	
		Braking short-circuit protection	\checkmark	\checkmark	
		Motor disconnection protection	\checkmark	\checkmark	
		Anti-snag protection			
	Master/slave	Speed synchronization	\checkmark		
	control	Power balance	\checkmark	\checkmark	\checkmark
	control	Position synchronization			
		Vortex control	\checkmark		
		Vortex removal control	\checkmark		
	Slewing control	Reverse braking	\checkmark		
		FWD/REV switchover	\checkmark		
		Jogging hook following	\checkmark		
		Load position			\checkmark
		Motor parameter switchover	\checkmark	\checkmark	\checkmark
	Other functions	Anti-sway protection for the trolley			
	Other functions	and long travel	N	V	N
		Motor temperature protection	\checkmark	\checkmark	\checkmark
		CVCF function	\checkmark		

3.4 Product nameplate

invt	CE 🗵
Model: GD350-19-037G-4-B	IP20
Power(Output): 37kW	
Input: AC 3PH 380V(-15%)-440V(+1	0%) 80A 47Hz-63Hz
Output: AC 3PH 0V-Uinput 75A 0Hz-	-400Hz
S/N:	Made in China
Shenzhen INVT Ele	ctric Co.,Ltd.

Figure 3-5 Product nameplate

Note: This is a nameplate example for standard Goodrive350-19 VFD models. The markings such as "CE" and "IP20" on the nameplate vary depending on actual certification status.

3.5 Model designation code

A model designation code contains product information. You can find the model designation code on the VFD nameplate and simplified nameplate.

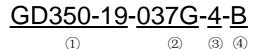


Figure 3-6 Model description

Field	Description	Content	
1	Product series abbreviation	GD350-19: Goodrive350-19 series VFD for cranes	
2	Power range + Load type	037: 37kW G: Constant torque load	
3	Voltage class	4: AC 3PH 380V (-15%)–440V (+10%) 6: AC 3PH 520V (-15%)–690V (+10%)	
4	Built-in braking unit	B: Built-in braking unit Empty: No built-in braking unit	

3.6 Product ratings

Table 3-3 AC 3PH 380V (-15%)-440V(+10%)

VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-1R5G-4-B	1.5	5.0	3.7
GD350-19-2R2G-4-B	2.2	5.8	5
GD350-19-004G-4-B	4	13.5	9.5
GD350-19-5R5G-4-B	5.5	19.5	14
GD350-19-7R5G-4-B	7.5	25	18.5
GD350-19-011G-4-B	11	32	25
GD350-19-015G-4-B	15	40	32
GD350-19-018G-4-B	18.5	41	38
GD350-19-022G-4-B	22	48	45
GD350-19-030G-4-B	30	58	60
GD350-19-037G-4-B	37	72	75
GD350-19-045G-4-B	45	88	92
GD350-19-055G-4-B	55	106	115
GD350-19-075G-4-B	75	139	150
GD350-19-090G-4-B	90	168	180
GD350-19-110G-4-B	110	201	215
GD350-19-132G-4	132	265	260
GD350-19-160G-4	160	310	305

Goodrive350-19 series VFD for crane

VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-185G-4	185	345	340
GD350-19-200G-4	200	385	380
GD350-19-220G-4	220	430	425
GD350-19-250G-4	250	485	480
GD350-19-280G-4	280	545	530
GD350-19-315G-4	315	610	600
GD350-19-355G-4	355	625	650
GD350-19-400G-4	400	715	720
GD350-19-450G-4	450	840	820
GD350-19-500G-4	500	890	860

Note:

- The input current of the 1.5–500kW VFD models is measured in cases where the input voltage is 380V without additional reactors.
- The rated output current is the output current when the output voltage is 380V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-022G-6	22	35	27
GD350-19-030G-6	30	40	35
GD350-19-037G-6	37	47	45
GD350-19-045G-6	45	52	52
GD350-19-055G-6	55	65	62
GD350-19-075G-6	75	85	86
GD350-19-090G-6	90	95	98
GD350-19-110G-6	110	118	120
GD350-19-132G-6	132	145	150
GD350-19-160G-6	160	165	175
GD350-19-185G-6	185	190	200
GD350-19-200G-6	200	210	220
GD350-19-220G-6	220	230	240
GD350-19-250G-6	250	255	270
GD350-19-280G-6	280	286	300
GD350-19-315G-6	315	334	350
GD350-19-355G-6	355	360	380

Table 3-4 AC 3PH 520V (-15%)-690V (+10%)

VFD model Output power (kW)		Input current (A)	Output current (A)
GD350-19-400G-6	400	411	430
GD350-19-450G-6	450	445	465
GD350-19-500G-6	500	518	540
GD350-19-560G-6	560	578	600
GD350-19-630G-6	630	655	680

Note:

- The input current of the 22–350kW VFD models is measured in cases where the input voltage is 660V without DC reactors and input/output reactors.
- The input current of the 400–630kW VFD models is measured in cases where the input voltage is 660V and there are input reactors.
- The rated output current is the output current when the output voltage is 660V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

3.7 Structure

The VFD structure is shown in the following figure (taking the 380V 30kW VFD model as an example).

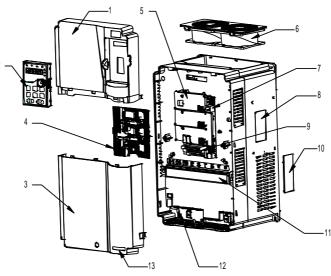


Figure 3-7 Structure diagram

Goodrive350-19 series VFD for crane

No.	Name	Description
1	Upper cover	Protects internal components and parts.
2	Keypad	For details, see section 6.2 Keypad introduction.
3	Lower cover	Protects internal components and parts.
4	Expansion card	Optional. For details, see Appendix A Expansion card.
5	Baffle of control board	Protects the control board and install expansion card.
6	Cooling fan	For details, see chapter 9 Maintenance.
7	Keypad interface	Connects the keypad.
8	Nameplate	For details, see chapter 3 Product overview.
9	Control circuit terminals	For details, see chapter 4 Installation guidelines.
10	Cover plate of heat emission hole	Optional. Using the cover plate can enhance the IP rating, however, as this also increases internal temperature, and therefore derating is required.
11	Main circuit terminal	For details, see chapter 4 Installation guidelines.
12	POWER indicator	Power supply indicator
13	GD350-19 product series label	For details, see section 3.5 Model designation code

4 Installation guidelines

4.1 What this chapter contains

This chapter describes the mechanical installation and electrical installation of the VFD.

	∻	Only trained and qualified professionals are allowed to carry out the operations
		mentioned in this chapter. Please carry out operations according to instructions
		presented in "Safety precautions". Ignoring these safety precautions may lead to
		physical injury or death, or device damage.
	\diamond	Ensure the VFD power has been disconnected before installation. If the VFD
		has been powered on, disconnect the VFD power and wait for at least the time
		specified on the VFD, and ensure the POWER indicator is off. You are
<u> 74</u>		recommended to use a multimeter to check and ensure the VFD DC bus voltage
		is below 36V.
	\diamond	The VFD installation must be designed and done according to applicable local
		laws and regulations. INVT does not assume any liability whatsoever for any
		VFD installation which breaches local laws or regulations. If recommendations
		given by INVT are not followed, the VFD may experience problems that the
		warranty does not cover.

4.2 Mechanical installation

4.2.1 Installation environment

The installation environment is essential for the VFD to operate with best performance in the long run. Install the VFD in an environment that meets the following requirements.

Environment	Condition
Installation site	Indoor
Ambient temperature	 → -10–50.0°C → When the ambient temperature exceeds 40°C, derate 1% for every increase of 1°C. → Do not use the VFD when the ambient temperature exceeds 50°C. → In order to improve reliability, do not use the VFD in the places where the temperature changes rapidly. → When the VFD is used in a closed space, such as control cabinet, use a cooling fan or air conditioner for cooling, preventing the internal temperature from exceeding the temperature required. → When the temperature is too low, if you want to use the VFD that has been idled for a long time, install an external heating device before the use to eliminate the freeze inside the VFD. Otherwise, the VFD may be damaged.
Relative	♦ RH: less than 90%

Environment	Condition		
humidity (RH)	 Condensation is not allowed. 		
	♦ The max. RH cannot exceed 60% in the environment where there are		
	corrosive gases.		
Storage			
temperature	-30–60.0°C		
	Install the VFD in a place:		
	 Away from electromagnetic radiation sources 		
	 Away from oil mist, corrosive gases, and combustible gases 		
	Without the chance for foreign objects such as metal powder, dust, oil and		
Running	water to fall into the VFD (do not install the VFD onto combustible objects such		
environment	as wood)		
	 Without radioactive substances and combustible objects 		
	 Without hazard gases and liquids 		
	♦ With low salt content		
	♦ Without direct sunlight		
	♦ Lower than 1000 meters		
Altitude	\diamond When the altitude exceeds 1000m, derate by 1% for every increase of 100m.		
Allitude	\diamond When the installation site altitude exceeds 3000m, consult the local INVT		
	dealer or office.		
Vibration	The max. amplitude of vibration cannot exceed 5.8m/s ² (0.6g).		
Installation			
direction	Install the VFD vertically to ensure good heat dissipation performance.		

Note:

• The VFD must be installed in a clean and well-ventilated environment based on the housing IP rating.

• The cooling air must be clean enough and free from corrosive gases and conductive dust.

4.2.2 Installation direction

The VFD can be installed on the wall or in a cabinet.

The VFD must be installed vertically. Check the installation position according to following requirements. For details about the outline dimensions, see Appendix C Dimension drawings.

Goodrive350-19 series VFD for crane

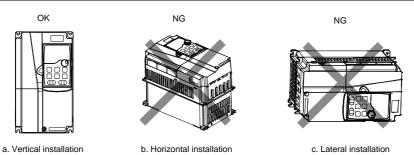
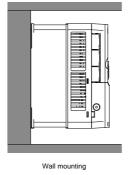



Figure 4-1 VFD installation direction

4.2.3 Installation method

There are three kinds of installation modes based on different VFD dimensions.

- Wall mounting: applicable to 380V 315kW and lower models, and 660V 355kW and lower models
- Flange mounting: applicable to 380V 200kW and lower models, and 660V 220kW and lower models
- Floor mounting: applicable to 380V 220–500kW and 660V 250–630kW models

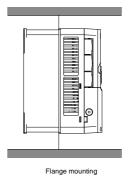


Figure 4-2 Installation mode

- 1. Mark the installation hole positions. For details about the installation hole positions, see Appendix D Dimensions.
- 2. Mount the screws or bolts onto the designated positions.
- 3. Lean the VFD against the wall.
- 4. Tighten the screws.

Note:

• When the flange mounting method is used, the (optional part) flange mounting plate is required

for the 380V 1.5-75kW VFD models but not required for the 380V 90-200kW and 660V 22-220kW VFD models.

 The 380V 220–315kW and 660V 250–355kW VFD models support the (optional part) installation base, which can house an input AC reactor (or DC reactor) and an output AC reactor.

4.2.4 Installing one VFD

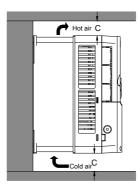


Figure 4-3 Installing one VFD

Note: For clearances B and C, each must be 100mm at least.

4.2.5 Installing multiple VFDs

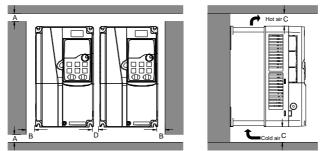


Figure 4-4 Parallel installation

Note:

- When you install VFDs in different sizes, align the top of each VFD before installation for the convenience of future maintenance.
- For clearances B, D, and C, each must be 100mm at least.

4.2.6 Vertical installation

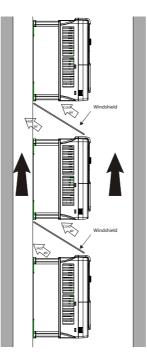


Figure 4-5 Vertical installation

Note: During vertical installation, you must install windshield, otherwise, the VFD will experience mutual interference, and the heat dissipation effect will be degraded.

4.2.7 Tilted installation

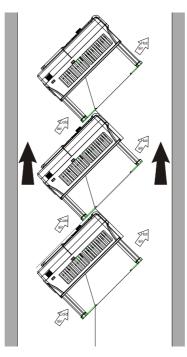


Figure 4-6 Tilted installation

Note: During tilted installation, it is a must to ensure the air inlet duct and air outlet duct are separated from each other to avoid mutual interference.

4.3 Standard wiring of the main circuit

4.3.1 Wiring diagram of the main circuit

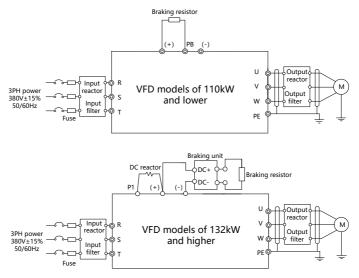


Figure 4-7 Main circuit wiring diagram for AC 3PH 380V(-15%)-440V(+10%)

Note:

- The fuse, DC reactor, braking unit, braking resistor, input reactor, input filter, output reactor and output filter are optional parts. For details, see Appendix D Optional peripheral accessories.
- P1 and (+) have been short connected by default for the 380V 132kW and higher VFD models. If you need to connect to an external DC reactor, take off the short-contact tag of P1 and (+).
- Before connecting the braking resistor, remove the yellow warning label with PB, (+) and (-) from the terminal block; otherwise, poor contact may occur.

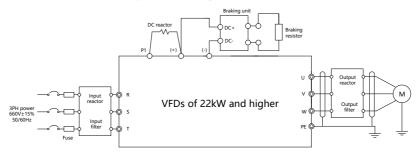


Figure 4-8 Main circuit wiring diagram for AC 3PH 520V(-15%)-690V(+10%)

Note:

- The fuse, DC reactor, braking resistor, input reactor, input filter, output reactor and output filter are optional parts. For details, see Appendix D Optional peripheral accessories.
- P1 and (+) have been short connected by default. If you need to connect to external DC reactor, remove the short-contact tag of P1 and (+).
- Before connecting the braking resistor, remove the yellow warning label with (+) and (-) from the terminal block; otherwise, poor contact may occur.
- 4.3.2 Main circuit terminal diagram

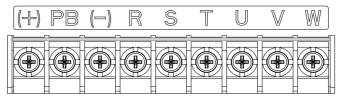


Figure 4-9 Main circuit terminal diagram for 3PH 380V 22kW and lower

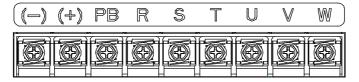


Figure 4-10 Main circuit terminal diagram for 3PH 380V 30-37kW

<u> </u>							
Ð	\bigcirc	Ð	Ð	Ð	Ð	Ð	Ð

Figure 4-11 Main circuit terminal diagram for 3PH 380V 45–110kW

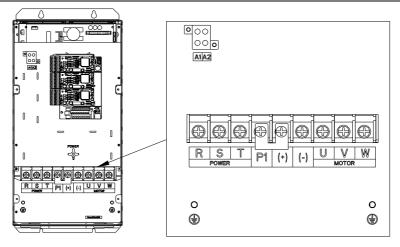


Figure 4-12 Main circuit terminal diagram for 660V 22–45kW

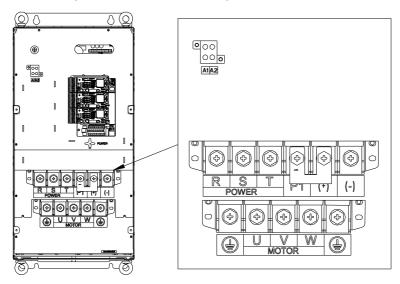


Figure 4-13 Main circuit terminal diagram for 660V 55–132kW

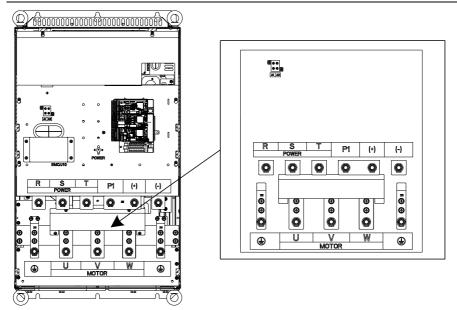


Figure 4-14 Main circuit terminal diagram for 380V 132–200kW and 660V 160–220kW

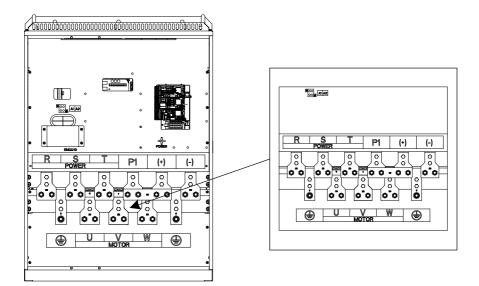


Figure 4-15 Main circuit terminal diagram for 380V 220–315kW and 660V 250–355kW

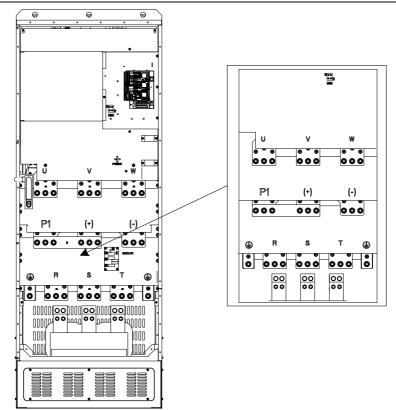


Figure 4-16 Main circuit terminal diagram for 380V 355–500kW and 660V 400–630kW

	Term	inal		
Symbol	380V 110kW and lower	380V 132kW and higher	Description	
		660V series		
R, S, T	Main circuit	ower input	3PH AC input terminals,	
r, 3, 1	Iviain circuit		connecting to the grid	
			3PH AC output terminals, which	
U, V, W	VFD or	utputs	connect to the motor in most	
			cases	
P1	Not available	DC reactor terminal 1	P1 and (+) connect to external DC	
(1)	Braking resistor terminal DC reactor terminal 2,		reactor terminals.	
(+)	1	Braking unit terminal 1	(+) and (-) connect to the external	
(-)	/	Braking unit terminal 2	braking unit.	

	Term	inal	Description	
		380V 132kW and		
Symbol	380V 110kW and lower	higher	Description	
		660V series		
PB	Braking resistor terminal		PB and (+) connect to the external	
РВ	2	Not available	braking resistor terminal.	
			Grounding terminal for safe	
PF	Grounding resistance less than 10 ohm		protection. Each VFD must carry	
PE			two PE terminals and proper	
			grounding is required.	

Note:

- Do not use asymmetrical motor cables. If there is a symmetrical grounding conductor in the motor cable besides the conductive shielded layer, ground the grounding conductor on the VFD end and motor end.
- Braking resistor, braking unit and DC reactor are optional parts.
- Route the motor cable, input power cable and control cable separately.
- "Not available" means this terminal is not for external connection.

4.3.3 Wiring procedure for main circuit terminals

- 1. Connect the grounding line of the input power cable to the grounding terminal (PE) of the VFD, and connect the 3PH input cable to R, S and T terminals and tighten up.
- 2. Connect the ground wire of the motor cable to the PE terminal of the VFD, connect the motor 3PH cable to the U, V and W terminals, and tighten up.
- 3. Connect optional parts such as the braking resistor that carries cables to designated positions.
- 4. Fasten all the cables outside the VFD mechanically if allowed.

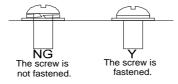
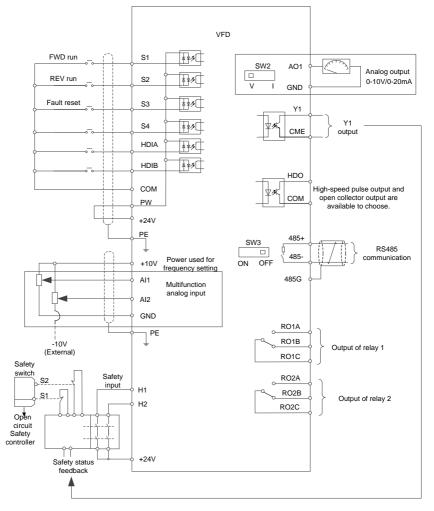



Figure 4-17 Screw installation diagram

4.4 Standard wiring of the control circuit

4.4.1 Wiring diagram of basic control circuit

Terminal	Description		
+10V	_ocally provided +10.5V power supply		
AI1	nput range: For AI1, 0–10V or 0–20mA		
410	For Al2, -10V – +10V		
Al2	Input impedance: $20k\Omega$ for voltage input or 250Ω for current input		

Description				
Whether voltage or current is used for input of Al1 is set through P05.50				
Resolution: 5mV when 10V corresponds to 50Hz				
Deviation: ±0.5% at 25°C, when input is above 5V/10mA				
Reference zero potential of +10.5V				
Output range: 0–10V or 0–20mA				
Whether voltage or current is used for output is set through the DIP switch SW2				
Deviation: ±0.5% at 25°C, when output is above 5V/10mA				
RO1 output; RO1A: NO; RO1B: NC; RO1C: common				
Contact capacity: 3A/AC250V, 1A/DC30V				
RO2 output; RO2A: NO; RO2B: NC; RO2C: common				
Contact capacity: 3A/AC250V, 1A/DC30V				
Switch capacity: 200mA/30V				
Output frequency range: 0–50kHz				
Duty ratio: 50%				
+24V common terminal				
Common terminal of open collector output; short connected to COM by default				
Switch capacity: 200mA/30V				
Output frequency range: 0–1kHz				
RS485 communication port, RS485 differential signal port and standard RS485				
communication port must use twisted shielded pairs; the 1200hm terminal matching				
resistor for RS485 communication is connected through the DIP switch SW3.				
Grounding terminal				
Used to provide input digital working power from the external to the internal				
Voltage range: 12–30V				
User power supply provided by the VFD. Max. output current: 200mA				
+24V common terminal				
Digital input 1 • Internal impedance: 3.3kΩ				
Digital input 2 • 12–30V voltage input is acceptable				
Digital input 3 Bi-direction input terminal, supporting both NPN and PNP Max_input frequency: 1kHz				
Max. input frequency: 1kHz Digital input 4 All are programmable digital input terminals, the functions of				
Digital input 4 • All are programmable digital input terminals, the functions of which can be set through function codes				
In addition to S1–S4 functions, the terminals can also act as high frequency pulse				
input channels.				
Max. input frequency: 50kHz				
Duty ratio: 30%–70%				

Terminal	Description		
	Supporting qua	drature encoder input; with the speed measurement function	
+24V—H1	STO input 1	Safe torque off (STO) redundant input, connected to the external	
+24V—H2	STO input 2	 NC contact. When the contact opens, STO acts and the VFD stops output. Safety input signal wires use shielded wires whose length is within 25m The H1 and H2 terminals are short connected to +24V by default. Remove the short connectors from the terminals before using STO function. 	

4.4.2 Input/output signal connection diagram

You can select the NPN/PNP mode and internal/external power through the U-type short connector. NPN internal mode is adopted by default. NPN internal mode is adopted by default.

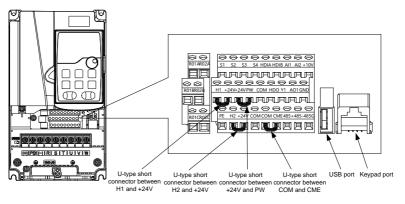


Figure 4-19 Position of U-type short connector

Note: As shown in the figure, the USB port can be used to upgrade the software, and the keypad port can be used to connect an external keypad. The external keypad cannot be used when the keypad of the VFD is used.

If input signal comes from NPN transistors, set the U-type short-contact tag between +24V and PW based on the power used according to the following figure.

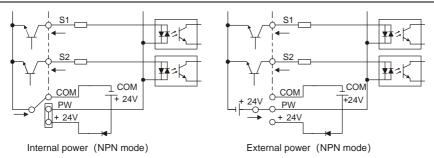


Figure 4-20 NPN mode

If input signal comes from PNP transistor, set the U-type short-contact tag based on the power used according to the following figure.

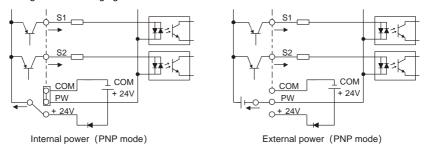


Figure 4-21 PNP mode

4.4.3 Control circuit wiring of I/O expansion card 2

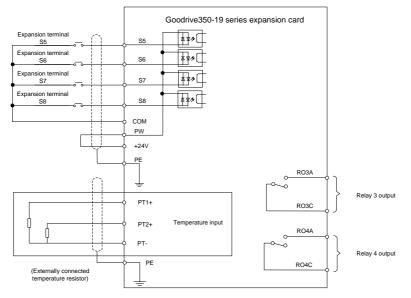


Figure 4-22 Control circuit wiring of I/O expansion card 2

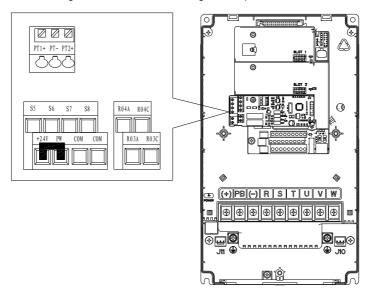


Figure 4-23 Terminal layout of I/O expansion card 2

Terminal		Description			
PT1+	Independent P	T100 and PT1000 inputs: PT1+ connects to PT100 resistor, while			
	PT2+ connects to PT1000 resistor.				
	 Resolution 	on: 1°C			
DTO	Range: -	• Range: -20°C–150°C			
PT2+	Detection	n precision: 3°C			
	 Supporti 	ng offline protection			
PT-	Reference zero	potential of PT100/PT1000			
RO3A	RO3 outputs. F	O3A: NO; RO3C: common			
RO3C	Contact capaci	ty: 3A/AC250V, 1A/DC30V			
RO4A	RO4 outputs. F	204A: NO; RO4C: common			
RO4C	Contact capaci	ty: 3A/AC250V, 1A/DC30V			
PW	Used to provide	e input digital working power from the external to the internal			
F VV	Voltage range:	24(-20%)–48VDC(+10%), 24(-10%)–48VAC(+10%) voltage input			
+24V	User power sup	pply provided by the VFD. Max. output current: 200mA			
COM	+24V common	terminal			
S5	Digital input 5	 Internal impedance: 6.6kΩ 			
		 Supporting the voltage input of external power 			
S6	Digital input 6	(-20%)24-48VDC(+10%) and (-10%)24-48VAC(+10%)			
		 Supporting the internal power 24V 			
		 Bi-direction input terminal, supporting both NPN and PNP 			
S7	Digital input 7	Max. input frequency: 1kHz			
		All are programmable digital input terminals, the functions of			
		which can be set through function codes			
S8	Digital input 8	It supports PTC input, while PTC acts at 2.5k Ω , and it supports the			
30	Digital input o	input of only dry contacts sharing COM.			

Note:

- You can install optional expansion cards for 1.5–5.5kW VFD models and you are recommended to install them at slot 2.
- I/O expansion card 2 has been installed at slot 3 for 7.5kW and higher VFD models as standard configuration.

4.5 Wiring protection

4.5.1 Protecting the VFD and input power cable in case of short circuit

The VFD and input power cable can be protected in case of short circuit, avoiding thermal overload.

Carry out protective measures according to the following figure.

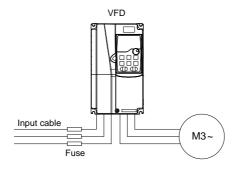


Figure 4-24 Fuse configuration

Note: Select the fuse according to the manual. In case of short circuit, the fuse protects input power cables to avoid damage to the VFD; if internal short-circuit occurs to the VFD, it can protect neighboring equipment from being damaged.

4.5.2 Protecting the motor and motor cable in case of short circuit

If the motor cable is selected based on VFD rated current, the VFD is able to protect the motor cable and motor during short circuit without other protective devices.

If the VFD is connected to multiple motors, use a separated thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

4.5.3 Protecting the motor against thermal overload

The motor must be protected against thermal overload. Once overload is detected, current must be cut off. The VFD is equipped with the motor thermal overload protection function, which can block output and cut off the current (if necessary) to protect the motor.

4.5.4 Bypass connection

⋌

In some critical scenarios, the power/variable frequency conversion circuit needs to be configured to ensure proper operation of the system when a fault occurs to the VFD.

In some special scenarios, such as in soft startup, power-frequency running is directly performed after the startup, which requires bypass connection.

Do not connect any power source to the VFD output terminals U, V, and W. The voltage applied to the motor cable may cause permanent damage to the VFD.

If frequent switchover is needed, you can use the switch which carries mechanical interlock or a contactor to ensure motor terminals are not connected to input power cables and VFD output ends simultaneously.

5 Commissioning guidelines

5.1 Lifting in open-loop vector control

5.1.1 Wiring

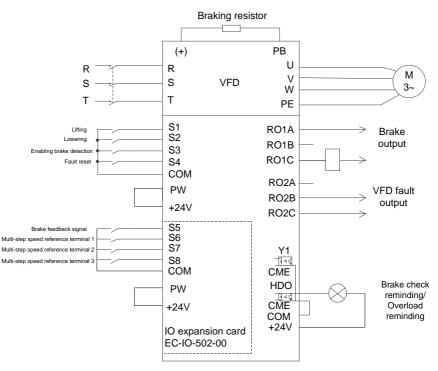


Figure 5-1 Wiring for lifting in open-loop vector control

Note: If the wiring is performed according to Figure 5-1, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.1.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P00.15=2. The keypad displays "-FUN-". Press the RUN key to perform static autotuning.
- 5. Set P90.00=1 to select the open-loop vector controlled lifting application macro.

6. Perform low-speed trial run.

5.1.3 Macro parameters (P90.00=1)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Sensorless vector control (SVC) mode 1
P00.01	Channel of running commands	1	Terminal
P00.03	Max. output frequency	100.00Hz	
P00.04	Upper limit of running frequency	100.00Hz	
P00.06	Setting channel of A frequency command	6	Multi-step speed run
P00.11	ACC time 1	6.0s	
P00.12	DEC time 1	4.0s	
P01.01	Starting frequency of direct start	1.00Hz	
P01.15	Stop speed	1.50 Hz	
P05.03	Function of S3	85	Enable brake detection
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output	49	Brake output
P10.04	Multi-step speed 1	8.0%	
P10.06	Multi-step speed 2	33.0%	
P10.08	Multi-step speed 3	50.0%	
P10.10	Multi-step speed 4	70.0%	
P10.12	Multi-step speed 5	100.0%	
P11.08	VFD/motor OL/UL pre-alarm selection	0x021	Enable underload protection to enhance equipment safety.
P11.11	Underload pre-alarm detection threshold	15%	
P25.01	Function of S5	75	Brake feedback signal
P25.02	Function of S6	16	Multi-step speed 1
P25.03	Function of S7	17	Multi-step speed 2
P25.04	Function of S8	18	Multi-step speed 3
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	40.0%	Corresponding to the motor rated torque

Goodrive350-19 series VFD for crane

Function code	Name	Setting	Remarks
P90.15	Reverse brake release torque	30.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	3.00Hz	
P90.17	Reverse brake release frequency	3.00Hz	
P90.18	Forward brake closing frequency	3.00Hz	
P90.19	Reverse brake closing frequency	3.50Hz	
P90.31	Enabling the monitoring on brake status	1	Enable the brake current monitoring (and brake feedback detection).
P91.08	Light load speed boost function selection	2	Constant power speed limit

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.1.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- 2. If you perform empty-load commissioning, set P90.00 to 1 (Lifting in open-loop vector control), set P11.08 to 0x000 to disable underload protection, and set P90.14 and P90.15 to 0 to prevent the torque verification fault reporting caused by empty load. In addition, if no external braking resistor is connected, you need to increase the ACC/DEC time to prevent the bus overvoltage fault reporting caused by too fast stop.
- If there is a brake feedback signal, set P25.02 to 75, and the macro has set this parameter by default. In addition, set P90.31 to 1. If there is no brake feedback signal, set P90.31 to 0 to prevent the misreporting of a brake feedback fault.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 5. If PLC control is used, speed signal and other input and output signal functions need to be adjusted according to the actual control logic.
- 6. This macro can meet the requirements of most lifting application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.2 Lifting in closed-loop vector control 5.2.1 Wiring

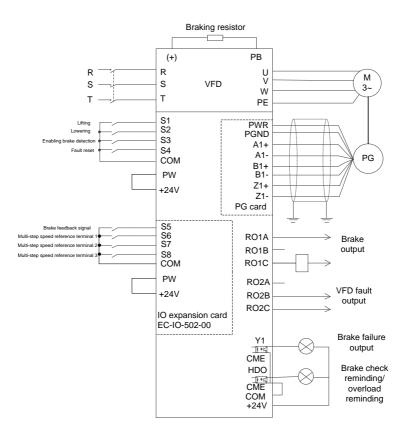


Figure 5-2 Wiring for lifting in closed-loop vector control

Note: If the wiring is performed according to Figure 5-2, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.2.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P00.15=2. The keypad displays "-FUN-". Press the RUN key to perform static autotuning.

- 5. Set P90.00=1, set the encoder type parameter P20.00, set the pulse per resolution (PPR) parameter P20.01. Perform low-speed upward running. Check the value of P18.00. If the value is negative, the encoder direction is reversed. Then you only need to set P20.02=0x001.
- 6. Set P90.00=2 to select the closed-loop vector controlled lifting application macro.
- 7. Perform low-speed trial run.

5.2.3 Macro parameters (P90.00=2)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	3	Closed-loop vector control mode
P00.01	Channel of running commands	1	Terminal
P00.03	Max. output frequency	100.00Hz	
P00.04	Upper limit of running frequency	100.00Hz	
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	6.0s	
P00.12	DEC time 1	4.0s	
P01.01	Starting frequency of direct start	0.00Hz	
P01.15	Stop speed	0.20Hz	
P01.24	Stop speed delay	1.0s	
P03.06	Speed loop output filter	1	
P03.10	Current-loop integral coefficient I	3500	
P05.03	Function of S3	85	Enable brake detection
P05.04	Function of S4	7	Fault reset
P06.01	Y1 output	57	Brake failure alarm
P06.03	RO1 output	49	Brake output
P08.28	Auto fault reset count	1	
P10.04	Multi-step speed 1	8.0%	
P10.06	Multi-step speed 2	33.0%	
P10.08	Multi-step speed 3	50.0%	
P10.10	Multi-step speed 4	70.0%	
P10.12	Multi-step speed 5	100.0%	
P10.14	Multi-step speed 6	0.6%	Slow speed at 0.6Hz
P10.16	Multi-step speed 7	2.0%	Slow speed at 2.0Hz
P11.08	VFD/motor OL/UL	0x021	Enable underload protection to enhance

Function code	Name	Setting	Remarks
	pre-alarm selection		equipment safety.
P11.11	Underload pre-alarm detection threshold	10%	
P11.12	Underload pre-alarm detection time	0.10s	
P11.14	Speed deviation detection value	20.0%	
P11.15	Speed deviation detection time	2.0s	Perform speed deviation protection.
P25.01	Function of S5	75	Brake feedback signal
P25.02	Function of S6	16	Multi-step speed 1
P25.03	Function of S7	17	Multi-step speed 2
P25.04	Function of S8	18	Multi-step speed 3
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	40.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	40.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	0.20Hz	
P90.17	Reverse brake release frequency	0.20Hz	
P90.18	Forward brake closing frequency	0.20Hz	
P90.19	Reverse brake closing frequency	0.20Hz	
P90.31	Enabling the monitoring on brake status	1	Enable the brake current monitoring (and brake feedback detection).
P91.08	Light load speed boost function selection	3	Stepped speed limit
P91.18	Upward torque limit 1	65%	
P91.19	Upward restricted frequency 1	55hz	
P91.20	Upward torque limit 2	40%	
P91.21	Upward restricted frequency 2	75hz	

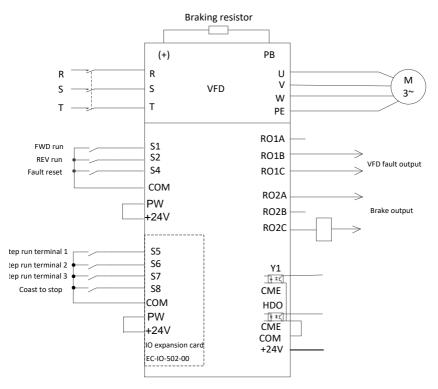
Function code	Name	Setting	Remarks
P91.26	Downward torque limit 1	50%	
P91.27	Downward restricted frequency 1	50hz	
P91.28	Downward torque limit 2	45%	
P91.29	Downward restricted frequency 2	70hz	
P93.02	Zero servo protection mode	1	Zero servo input slows down.

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.2.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- 2. If you perform empty-load commissioning, set P90.00 to 2 (Lifting in closed-loop vector control), set P11.08 to 0x000 to disable underload protection, and set P90.14 and P90.15 to 0 to prevent the torque verification fault reporting caused by empty load. In addition, if no external braking resistor is connected, you need to increase the ACC/DEC time to prevent the bus overvoltage fault reporting caused by too fast stop.
- 3. If there is a brake feedback signal, set P25.02 to 75, and the macro has set this parameter by default. In addition, set P90.31 to 1. Since the closed-loop mode is used, the brake current monitoring function is automatically enabled after the setting, and you can set P90.34 to set whether the reference speed is used if the brake status is incorrect. If there is no brake feedback signal, set P90.31 to 0 to prevent the misreporting of a brake feedback fault.
- In closed-loop mode, brake slip verifying is enabled by default. If you need to check the running status of the VFD without a brake, set P93.01 to 0 to disable brake slip verifying.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- If PLC control is used, speed signal and other input and output signal functions need to be adjusted according to the actual control logic.
- 7. This macro can meet the requirements of most lifting application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.2.5 Switching from lifting in closed-loop vector control to open-loop vector control


In closed-loop vector control mode, if an encoder exception occurs, you can switch to open-loop vector control by setting P90.03=5, the brake timing sequence of which is different from that of

closed-loop vector control. To switch the application macro and motor control mode, do as follows:

- Set P90.00=2 (Lifting in closed-loop vector control), and set P90.01=1 (Lifting in open-loop vector control).
- 2. Set P90.03=5 (Switch to SVC1 control).
- 3. Set S terminal function 62 to SVC1.
- 4. When the S terminal is invalid, the motor uses P90.00=2; when the S terminal is valid, the motor uses P90.01=1.

5.3 Horizontal moving

5.3.1 Wiring

Figure 5-3 Wiring for horizontal moving

Note: If the wiring is performed according to Figure 5-3, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.3.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P90.00=3 to select the horizontal moving application macro.
- 5. Perform low-speed trial run.

5.3.3 Macro parameters (P90.00=3)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.03	Max. output frequency	100.00Hz	
P00.04	Upper limit of running frequency	60.00Hz	
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	5.0s	
P00.12	DEC time 1	4.0s	
P01.01	Starting frequency of direct start	2.00Hz	
P01.15	Stop speed	1.00 Hz	
P05.03	Function of S3	0	No function
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output	5	VFD in fault
P06.04	RO2 output	1	Running
P10.04	Multi-step speed 1	8.0%	Corresponding to the max. frequency
P10.06	Multi-step speed 2	18.0%	Corresponding to the max. frequency
P10.08	Multi-step speed 3	32.0%	Corresponding to the max. frequency
P10.10	Multi-step speed 4	50.0%	Corresponding to the max. frequency
P11.05	Current limit mode	0x11	Enable software and hardware current limit.
P11.26	Enabling special functions	1	
P25.01	Function of S5	16	Multi-step speed 1
P25.02	Function of S6	17	Multi-step speed 2
P25.03	Function of S7	18	Multi-step speed 3
P25.04	Function of S8	6	Coast to stop
P25.10	Expansion card input terminal polarity	0x08	Terminal polarity

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.3.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- If you perform empty-load commissioning, set P90.00 to 3 (Horizontal moving application macro), set P11.08 to 0x000 to disable underload protection, and set P90.12 and P90.13 to 0 to prevent the torque verification fault reporting caused by empty load.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the hook lifting/lowering, swap any two phase wires of VFD output terminals U, V, and W.
- 4. This macro can meet the requirements of most horizontal moving application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.4 Tower crane slewing with vortex

5.4.1 Wiring

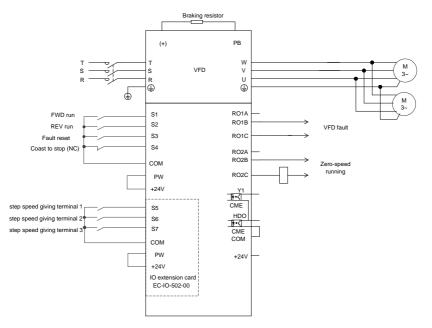


Figure 5-4 Wiring for tower crane slewing

Note: If the wiring is performed according to Figure 5-4, most VFD parameters need no adjustment. If

the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.4.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P90.00=4 to select the application macro for tower crane slewing.
- 5. Perform low-speed trial run.

5.4.3 Macro parameters (P90.00=4)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	10.0s	Low-frequency ACC time
P00.12	DEC time 1	18.0s	Low-frequency DEC time
P01.01	Starting frequency of direct start	1.50Hz	
P01.15	Stop speed	1.00Hz	
P05.03	Function of S3	7	Fault reset
P05.04	Function of S4	6	Coast to stop
P05.08	Input terminal polarity	0x08	NC when S4 uses coasting to stop.
P06.03	RO1 output	5	VFD in fault
P06.04	RO2 output	9	Running in zero speed
P06.05	Output terminal polarity selection	0x4	RO1 is NC.
P08.00	ACC time 2	15.0s	High-frequency ACC time
P08.01	DEC time 2	13.0s	High-frequency DEC time
P08.19	Switching frequency of ACC/DEC time	16.00Hz	If the running frequency is greater than P08.19, switch to ACC/DEC time 2.
P10.04	Multi-step speed 1	16.0%	Corresponding to the max. frequency
P10.06	Multi-step speed 2	36.0%	Corresponding to the max. frequency
P10.08	Multi-step speed 3	60.0%	Corresponding to the max. frequency
P10.10	Multi-step speed 4	100.0%	Corresponding to the max. frequency
P25.01	Function of S5	16	Multi-step speed terminal 1
P25.02	Function of S6	17	Multi-step speed terminal 2
P25.03	Function of S7	18	Multi-step speed terminal 3

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.4.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0(Common mode).
- If you perform empty-load commissioning, set P90.00=4 to select the application macro for tower crane slewing.
- During onsite commissioning, if the VFD terminal signal forward/reverse running command is inconsistent with the load running direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 4. This macro can meet the requirements of most application cases for tower crane slewing, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.4.5 Controlling the vortex module through the HDO terminal

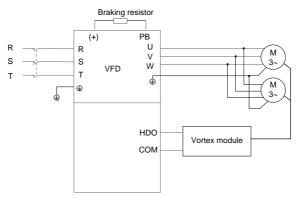


Figure 5-5 Connecting the HDO terminal to the vortex module

Commissioning procedure

- 1. Connect the HDO terminal to the vortex module according to the figure.
- Set P91.37=1 to enable vortex control for tower crane rotating, and set P91.38 to adjust the carrier frequency of HDO.
- 3. Set P91.38–P91.47 to adjust the vortex module output voltage change with frequency.

Note: The duty ratio that is output when bit1 of P06.05 is 1 decreases when the frequency increases. The vortex module output voltage decreases when the frequency increases.

Function code	Name	Setting	Setting
P06.05	Output terminal polarity selection	Used to set the polarity of output terminals. When a bit is 0, the input terminal is positive; when a bit is 1, the input terminal is negative. BIT3 BIT2 BIT1 BIT0 RO2 RO1 HDO Y Setting range: 0x0 –0xF	2
P91.37	Enabling HDO based vortex control for tower crane slewing	1: HDO is used as PWM signal for voltage adjustment output.	1
P91.38	Frequency f0	P91.38 setting range: P91.40-P00.03	50.00Hz
P91.39	Duty ratio corresponding to frequency f0	(Max. output frequency) <u>P91.40</u> setting range: <u>P91.42</u> – <u>P91.38</u>	100.0%
P91.40	Frequency f1	P91.42 setting range: P91.44-P91.40	40.00Hz
P91.41	Duty ratio corresponding to frequency f1	<u>P91.44</u> setting range: <u>P91.46</u> – <u>P91.42</u> <u>P91.46</u> setting range: 0.00Hz– <u>P91.44</u>	95.0%
P91.42	Frequency f2	<u>P91.39, P91.41, P91.43,</u> and <u>P91.47</u>	10.00Hz
P91.43	Duty ratio corresponding to frequency f2	setting range: 0.0%–100.0% Segmented adjustment is performed	90.0%
P91.44	Frequency f3	based on the cycle ratio and frequency.	3.50Hz
P91.45	Duty ratio corresponding to frequency f3	Duty ratio	84.5%
P91.46	Frequency f4	100%-P91.45	0.00Hz
P91.47	Duty ratio corresponding to frequency f4	100%-P91.43 100%-P91.41 100%-P91.41 P91.46 P91.44 P91.42 P91.40 P91.38	0.0%
P91.48	HDO carrier frequency	0.5–10.0kHz	1.0kHz
P91.49	HDO closing delay during stop	0–100.0s	5.0s

5.4.6 Controlling the vortex module through the AO terminal

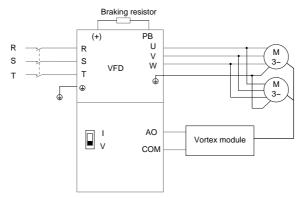
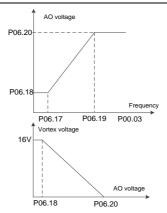


Figure 5-6 Connecting the AO terminal to the vortex module

Note: Turn SW2 on the control board to "V" for voltage output.


Controlling the vortex module through the AO terminal

- 1. Connect the AO terminal to the vortex module according to the figure.
- 2. Set P06.14=0 to select running frequency output for AO1.
- 3. Set P06.17–P06.21 to adjust the vortex module output voltage percentage.

The output voltage percentage is the ratio of running frequency to P00.03.

Function code settings:

Function code	Name	Description	Default
P06.14	AO1 output	0: Running frequency	0
P06.17	AO1 output lower limit	-300.0%–P06.19	16.0%
P06.18	AO1 output corresponding to lower limit	0.00V-10.00V	2.00V
P06.19	AO1 output upper limit	P06.17-100.0%	60.0%
P06.20	AO1 output corresponding to upper limit	0.00V-10.00V	10.00V
P06.21	AO1 output filter time	0.000s-10.000s	0.000s

The relationship between the motor running frequency, AO voltage, and vortex voltage is as follows:

Running frequency	< 8Hz	8Hz	18Hz	30Hz	> 30Hz
AO voltage	2V	2V	5.64V	10V	10V
Vortex voltage	16V	16V	8.72V	0V	0V

5.5 Tower crane rotating without vortex in space voltage vector control 5.5.1 Wiring

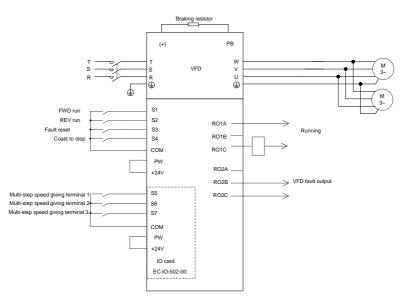


Figure 5-7 Wiring for tower crane rotating (without vortex) in space voltage vector control

Note: If the wiring is performed according to Figure 5-7, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.5.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P90.00=15 to select the application macro for tower crane slewing without vortex in space voltage vector control.
- 5. Perform low-speed trial run.

5.5.3 Macro parameters (P90.00=15)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A	6	Multi-step speed running

Function code	Name	Setting	Remarks
	frequency command		
P00.11	ACC time 1	15.0s	Low-frequency ACC time
P00.12	DEC time 1	15.0s	Low-frequency DEC time
P01.05	ACC/DEC mode	2	Rotation application mode
P01.15	Stop speed	1.00 Hz	
P05.04	Function of S4	6	Coast to stop
P08.30	Frequency decrease ratio in drop control	10.00Hz	
P10.04	Multi-step speed 1	20.0%	Corresponding to the max. frequency, gear-1 speed
P10.06	Multi-step speed 2	40.0%	Corresponding to the max. frequency, gear-2 speed
P10.08	Multi-step speed 3	60.0%	Corresponding to the max. frequency, gear-3 speed
P10.10	Multi-step speed 4	90.0%	Corresponding to the max. frequency, gear-4 speed
P25.01	Function of S5	16	Multi-step speed 1
P25.02	Function of S6	17	Multi-step speed 2
P25.03	Function of S7	18	Multi-step speed 3
P86.01	Curve coefficient	80	
P86.02	Stop torque hold time	10.0s	
P86.12	Enabling direction change switchover	1	Enable
P86.16	Hold time 1 of direction change switchover frequency	2.000s	
P86.21	Enabling reverse-rotation braking	2	Enable
P86.22	Reverse-rotation braking duration	8.0s	
P86.23	Reverse-rotation braking comparison frequency	15.00Hz	
P86.24	Reverse-rotation braking frequency hold time	1.500s	

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.5.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0(Common mode).
- 2. If you perform empty-load commissioning, set P90.00=15 to select the application macro for tower crane slewing without vortex in space voltage vector control.
- During onsite commissioning, if the VFD terminal signal forward/reverse running command is inconsistent with the load running direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 4. This macro can meet the requirements of most application cases for tower crane rotating (without vortex) in space voltage vector control, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.6 Conical motor function

5.6.1 Wiring

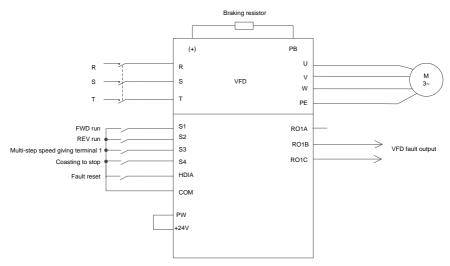


Figure 5-8 Wiring for the conical motor

Note: If the wiring is performed according to Figure 5-8, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.6.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P90.00=5 to select the conical motor application macro.

5. Perform low-speed trial run.

5.6.3 Macro parameters (P90.00=5)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	3.0s	Time taken to accelerate from 0Hz to the max. frequency.
P00.12	DEC time 1	2.0s	Time taken to decelerate from the max. frequency to 0Hz.
P01.01	Starting frequency of direct start	2.00Hz	2.00Hz
P05.00	HDI input type	0x01	HDIA is digital input.
P05.03	Function of S3	16	Multi-step speed terminal 1
P05.04	Function of S4	6	Coast to stop
P05.05	Function of HDIA	7	Fault reset
P06.03	RO1 output	5	Fault output
P10.02	Multi-step speed 0	50.0%	50% of the max. output frequency P00.03
P10.04	Multi-step speed 1	100.0%	100% of the max. output frequency P00.03
P91.00	Enabling the conical motor function	1	Enabling the conical motor function

Table 5-1 Parameter settings

5.6.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- If the direction is incorrect when the heavy load runs upward during lifting in forward running mode, adjust any two phase sequences of VFD output terminals U, V, and W but not change the value of P00.13.
- The starting frequency cannot be set too low. During onsite commissioning, ensure the starting frequency is set properly so that the brake can be turned on, and ensure the brake has been turned on before running.
- 4. The lifting ACC time can be 3s at most. If the ACC time is too long, the brake may not be opened.
- 5. The rated voltage must be at least 380V. If the grid rated voltage is too low (lower than 85% Ue), the brake cannot be opened; if the voltage is too low, the speed cannot be boosted.
- 6. When the conical motor performs constant-power variable-frequency speed regulation (boost), the max. rotational speed cannot exceed 1.2 times the rated speed (60Hz). Otherwise, the motor cannot run properly since the pressure spring cannot be pushed due to the axial magnetic pull

force reduce, and therefore the VFD encounters the current limit or overcurrent fault.

5.7 Lifting in space voltage vector control

5.7.1 Wiring

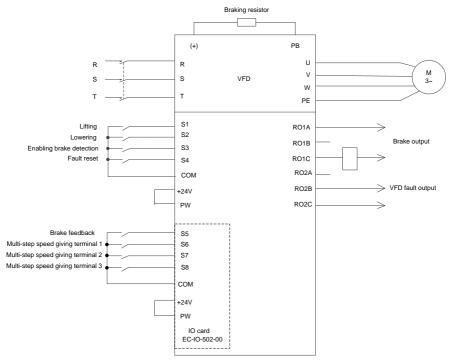


Figure 5-9 Wiring for lifting in space voltage vector control

Note: If the wiring is performed according to Figure 5-9, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.7.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P90.00=9 to select the space voltage vector controlled lifting application macro.
- 5. Perform low-speed trial run.

Note: In closed-loop mode, when the encoder is abnormal, set P90.00=9 to switch to the space

voltage vector control mode. The two modes are different in the brake timing logic, and therefore you need to adjust P01, P04, and P90 parameters accordingly.

5.7.3 Macro parameters (P90.00=9)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.03	Max. output frequency	100.00Hz	
P00.04	Upper limit of running frequency	100.00Hz	
P00.06	Setting channel of A frequency command	6	Multi-step speed run
P00.11	ACC time 1	8.0s	
P00.12	DEC time 1	8.0s	
P04.01	Torque boost of motor 1	0.1%	Disable automatic torque boost.
P04.02	Torque boost cut-off of motor 1	0.1%	
P04.40	Enabling I/F mode for AM 1	1	Enable the I/F mode.
P05.03	Function of S3	85	Enable brake detection
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output	49	Brake output
P10.04	Multi-step speed 1	8.0%	
P10.06	Multi-step speed 2	20.0%	
P10.08	Multi-step speed 3	30.0%	
P10.10	Multi-step speed 4	40.0%	
P10.12	Multi-step speed 5	50.0%	
P11.08	VFD/motor OL/UL	0x021	Enable underload protection to
P11.11	pre-alarm selection Underload pre-alarm detection threshold	15%	enhance equipment safety.
P25.01	Function of S5	75	Brake feedback signal
P25.02	Function of S6	16	Multi-step speed 1
P25.03	Function of S7	17	Multi-step speed 2
P25.04	Function of S8	18	Multi-step speed 3
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.12	Forward brake release	50.0%	Corresponding to the motor rated

Function code	Name	Setting	Remarks
	current		current
P90.13	Reverse brake release current	50.0%	Corresponding to the motor rated current
P90.16	Forward brake release frequency	1.50Hz	
P90.17	Reverse brake release frequency	1.50Hz	
P90.18	Forward brake closing frequency	1.50Hz	
P90.19	Reverse brake closing frequency	1.50Hz	
P90.31	Enabling the monitoring on brake status	1	Enable the brake current monitoring (and brake feedback detection).

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.7.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- 2. If you perform empty-load commissioning, set P90.00 to 9 (Lifting in space voltage vector control), set P11.08 to 0x000 to disable underload protection, and set P90.12 and P90.13 to 0 to prevent the torque verification fault reporting caused by empty load. In addition, if no external braking resistor is connected, you need to increase the ACC/DEC time to prevent the bus overvoltage fault reporting caused by too fast stop.
- If there is a brake feedback signal, set P05.06 to 75, and the macro has set this parameter by default. In addition, set P90.31 to 1. If there is no brake feedback signal, set P90.31 to 0 to prevent the misreporting of a brake feedback fault.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 5. If PLC control is used, speed signal and other input and output signal functions need to be adjusted according to the actual control logic.
- 6. This macro can meet the requirements of most lifting application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.8 Winching in closed-loop vector control (applicable to lifting in mineral wells and winches)

5.8.1 Wiring



Figure 5-10 Wiring for winching in closed-loop vector control (recommended analog reference 0V-10V)

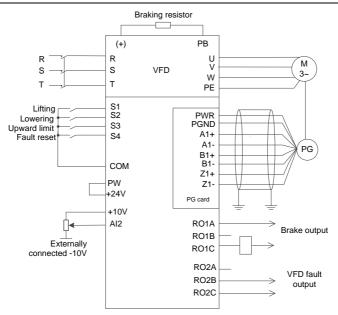


Figure 5-11 Wiring for winching in closed-loop vector control (using analog reference -10V–10V)

5.8.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P00.15=2. The keypad displays "-FUN-". Press the RUN key to perform static autotuning.
- 5. Set the encoder type parameter P20.00, set the pulse per resolution (PPR) parameter P20.01. Perform low-speed upward running. Check the value of P18.00. If the value is negative, the encoder direction is reversed. Then you only need to set P20.02=0x001.
- 6. Set P90.00=11 to select the closed-loop vector controlled winching application macro.
- 7. Perform low-speed trial run.

5.8.3 Macro parameters (P90.00=11)

Table 5-2 Parameter settings for the closed-loop vector controlled winching application macro (recommended analog reference 0V–10V)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	3	3: Closed-loop vector control mode
P00.01	Channel of running	1	Terminal

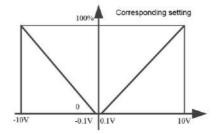
Function code	Name	Setting	Remarks
	commands		
P00.06	Setting channel of A frequency command	1	Al1
P00.07	Setting channel of B frequency command	0	Keypad
P00.11	ACC time 1	10.0s	
P00.12	DEC time 1	5.0s	
P01.15	Stop speed	0.20 Hz	
P03.25	Pre-exciting time	0.000	Disable pre-exciting.
P05.03	Function of S3	64	Upward position limit
P05.04	Function of S4	5	Fault reset
P05.24	Al1 lower limit	0.20V	0.00V–P05.26. Adjust the value according to the actual situation.
P05.28	AI1 input filter time	0.100s	0.000s-10.000s
P06.03	RO1 output	49	Brake output
P06.04	RO2 output	5	VFD in fault
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	50.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	50.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	1.00Hz	
P90.17	Reverse brake release frequency	1.00Hz	
P90.18	Forward brake closing frequency	1.00Hz	
P90.19	Reverse brake closing frequency	1.00Hz	

Table 5-3 Parameter settings for the closed-loop vector controlled winching application macro (using analog reference -10V–10V)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	3	3: Closed-loop vector control mode
P00.01	Channel of running	1	Terminal

Function code	Name	Setting	Remarks
	commands		
P00.06	Setting channel of A frequency command	2	AI2
P00.07	Setting channel of B frequency command	0	Keypad
P00.11	ACC time 1	10.0s	
P00.12	DEC time 1	5.0s	
P01.15	Stop speed	0.20 Hz	
P03.25	Pre-exciting time	0.000	Disable pre-exciting.
P05.03	Function of S3	64	Upward position limit
P05.04	Function of S4	5	Fault reset
P05.29	AI2 lower limit	-10.00V	-10.00V-P05.31
P05.30	Corresponding setting of Al2 lower limit	100.0%	-300.0%–300.0%
P05.31	Al2 middle value 1	-0.10V	P05.29–P05.33
P05.32	Corresponding setting of AI2 middle value 1	0.0%	-300.0%–300.0%
P05.33	AI2 middle value 2	0.10V	P05.31–P05.35
P05.34	Corresponding setting of AI2 middle value 2	0.0%	-300.0%–300.0%
P05.35	Al2 upper limit	10.00V	P05.33-10.00V
P05.36	Corresponding setting of AI2 upper limit	100.0%	-300.0%–300.0%
P05.37	AI2 input filter time	0.100s	0.000s-10.000s
P06.03	RO1 output	49	Brake output
P06.04	RO2 output	5	VFD in fault
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	50.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	50.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	1.00Hz	
P90.17	Reverse brake release frequency	1.00Hz	
P90.18	Forward brake closing	1.00Hz	

Function code	Name	Setting	Remarks
	frequency		
P90.19	Reverse brake closing frequency	1.00Hz	


5.8.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- If you perform empty-load commissioning, set P90.00 to 11, and set P90.14 and P90.15 to 0, preventing the VFD from reporting the torque verification fault tPF due to empty load. If no braking resistor is externally connected, increase the ACC/DEC time, preventing the VFD from reporting the bus overvoltage fault due to fast stop.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 4. This macro can meet the requirements of most closed-loop vector controlled winching application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.8.5 How to use the -10-+10V analog operating lever

When the analog reference is -10V–+10V, Al2 must be used, and the values of P05.29, P05.30, P05.31, and P05.35 must be increased in order.

The following figure shows the mapping between analog reference and frequency setting.

5.9 Winching in open-loop vector control (applicable to lifting in mineral wells and winches)

5.9.1 Wiring

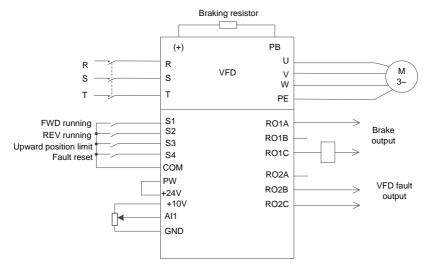
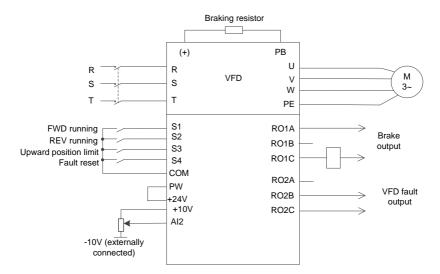
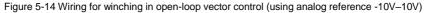




Figure 5-13 Wiring for winching in open-loop vector control (recommended analog reference 0V-10V)

Note: If the onsite function terminals are inconsistent with the terminals shown in the wiring diagrams, select the open-loop vector controlled winching application macro and adjust the input and output terminal functions according to the actual wiring. The recommended analog reference is 0V–10V.

5.9.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P00.15=2. The keypad displays "-FUN-". Press the RUN key to perform static autotuning.
- 5. Set P90.00=12 to select the open-loop vector controlled winching application macro.
- 6. Perform low-speed trial run.

5.9.3 Macro parameters (P90.00=12)

Table 5-4 Parameter settings for the open-loop vector controlled winching application macro (recommended analog reference 0V–10V)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Sensorless vector control (SVC) mode 1
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	1	Al1
P00.07	Setting channel of B frequency command	0	Keypad
P00.11	ACC time 1	10.0s	
P00.12	DEC time 1	5.0s	
P05.03	Function of S3	64	Upward position limit
P05.04	Function of S4	5	Fault reset
P05.24	AI1 lower limit	0.20V	0.00V–P05.26. Adjust the value according to the actual situation.
P05.28	AI1 input filter time	0.100s	0.000s-10.000s
P06.03	RO1 output	49	Brake output
P06.04	RO2 output	5	VFD in fault
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	50.0%	Corresponding to the motor rated torque

Function code	Name	Setting	Remarks
P90.15	Reverse brake release torque	50.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	2.00Hz	
P90.17	Reverse brake release frequency	2.00Hz	
P90.18	Forward brake closing frequency	2.00Hz	
P90.19	Reverse brake closing frequency	2.00Hz	

Table 5-5 Parameter settings for the open-loop vector controlled winching application macro (using analog reference -10V–10V)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Sensorless vector control (SVC) mode 1
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	2	AI2
P00.07	Setting channel of B frequency command	0	Keypad
P00.11	ACC time 1	10.0s	
P00.12	DEC time 1	5.0s	
P05.03	Function of S3	64	Upward position limit
P05.04	Function of S4	5	Fault reset
P05.29	Al2 lower limit	-10.00V	-10.00V-P05.31
P05.30	Corresponding setting of Al2 lower limit	100.0%	-300.0%–300.0%
P05.31	AI2 middle value 1	-0.10V	P05.29–P05.33
P05.32	Corresponding setting of Al2 middle value 1	0.0%	-300.0%–300.0%
P05.33	Al2 middle value 2	0.10V	P05.31–P05.35
P05.34	Corresponding setting of Al2 middle value 2	0.0%	-300.0%–300.0%
P05.35	AI2 upper limit	10.00V	P05.33-10.00V

Goodrive350-19 series VFD for crane

Function code	Name	Setting	Remarks
P05.36	Corresponding setting of AI2 upper limit	100.0%	-300.0%–300.0%
P05.37	AI2 input filter time	0.100s	0.000s-10.000s
P06.03	RO1 output	49	Brake output
P06.04	RO2 output	5	VFD in fault
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	50.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	50.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	2.00Hz	
P90.17	Reverse brake release frequency	2.00Hz	
P90.18	Forward brake closing frequency	2.00Hz	
P90.19	Reverse brake closing frequency	2.00Hz	

5.9.4 Points for attention

- 1. If you only want to check whether the VFD runs properly, set P90.00=0 (Common mode).
- If you perform empty-load commissioning, set P90.00 to 12, and set P90.14 and P90.15 to 0, preventing the VFD from reporting the torque verification fault tPF due to empty load. If no braking resistor is externally connected, increase the ACC/DEC time, preventing the VFD from reporting the bus overvoltage fault due to fast stop.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 4. This macro can meet the requirements of most open-loop vector controlled winching application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.10 Electric potentiometer

5.10.1 Wiring

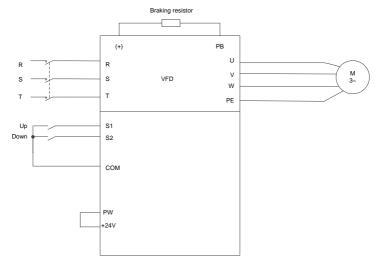


Figure 5-15 Electric potentiometer wiring

5.10.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P05.01=10 and P05.02=11 to specify the UP/DOWN terminals.
- 5. Set P08.44 to set terminal control validity, and set P08.45 and P08.46 to set the increase/decrease change rate of the UP/DOWN terminal frequency.
- 6. Press UP/DOWN to run.

The following figure shows the electric potentiometer.

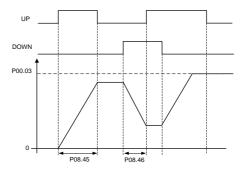


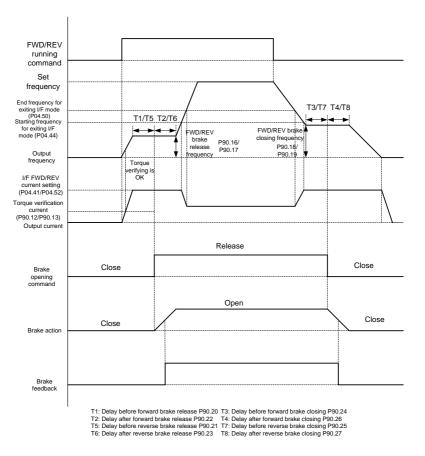
Figure 5-16 Electric potentiometer commissioning diagram

5.10.3 Electric potentiometer commissioning parameters

Function code	Name	Setting	Remarks
P00.03	Max. output frequency	50	Used to set the max. output frequency of the VFD.
P05.01	Function of S1	10	Increase frequency setting (UP)
P05.02	Function of S2	11	Decrease frequency setting (DOWN)
P08.44	UP/DOWN terminal control setting	0x000	0x000-0x221 Ones place: Frequency setting selection 0: The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Tens place: Frequency control selection 0: Valid only when P00.06=0 or P00.07=0 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after

Table 5-6 Electric potentiomete	r commissioning parameters
---------------------------------	----------------------------

Function code	Name	Setting	Remarks
			stop
			2: Valid during running, cleared after a
			stop command is received
	Frequency increment		
P08.45	integral rate of the UP	0.50Hz/s	0.01–50.00Hz/s
	terminal		
D09.46	Frequency integral rate of	0.50Hz/s	
P08.46	the DOWN terminal	0.50HZ/S	0.01–50.00Hz/s

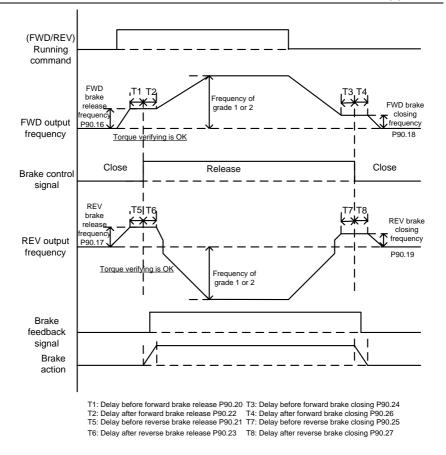

5.11 Brake

5.11.1 Brake function in space voltage vector control

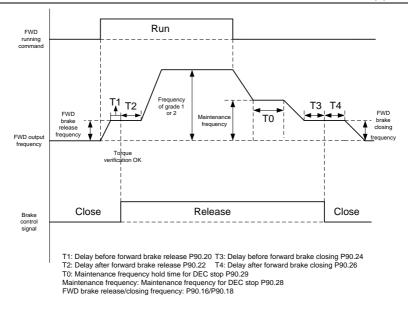
- 1. Set P90.04 to 1 to enable the brake function.
- 2. Set relay brake output. If RO2 is connected to the braking contactor, set P06.04 to 49.
- If the brake contactor has the feedback function, connect the brake feedback wire to an input terminal, for example, S3. Then set P05.03 to 75 indicating brake feedback signal. Set P90.31 to 1 to enable brake feedback detection. If the brake contactor does not provide the feedback function, ignore this.
- 4. In lifting application, enable the I/F function, set P04.40 to 1, set P04.41, and set P04.52. In horizontal moving application, you can choose whether to enable the I/F function.
- 5. Set P90.12 (Forward brake release current) and P90.13 (Reverse brake release current) to ensure there is enough torque before the brake is opened.
- 6. Set the brake timing, including the forward/reverse brake release frequency, forward/reverse brake closing frequency, delay before forward brake release (T1), delay before reverse brake release (T5), delay after forward brake release (T2), delay after reverse brake release (T6), delay before forward brake closing (T3), delay before reverse brake closing (T7), delay after forward brake closing (T4), and delay after reverse brake closing (T8).

Note: If delay before reverse brake release (T5), delay after reverse brake release (T6), delay before reverse brake closing (T7), and delay after reverse brake closing (T8) are set to 0, the delay parameters for forwarding running are used.

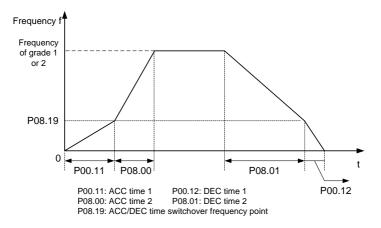
7. Perform trial run and check whether the brake timing is correct.



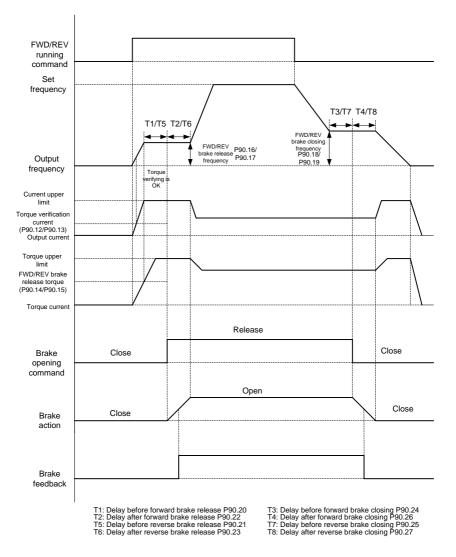
Space voltage vector control mode


8. Adjust braking comfortability, which can be implemented by using the following methods.

A. In I/F mode, you can decrease the brake release frequency and brake closing frequency and adjust the T1–T8 delay parameters in the timing sequence so that the impact is reduced. Note that the brake release frequency and brake closing frequency are greater than P01.01 (Starting frequency) and P01.15 (Stop speed) in most cases.


B. During the reverse-running stop, you can apply the forward torque, that is, for reverse-running start, you can perform forward brake release and then perform reverse running; for reverse-running stop, you can switch reverse running to forward running, close the brake, and then perform forward-running stop. This ensures there is no slip is felt during reverse start or stop. Forward torque is enabled by setting P90.05. The timing sequence is as follows:

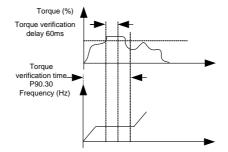
C. During the stop process, you can enable the maintenance frequency so that the device runs at a low speed within a small period of time before the stop, since impact may be caused if the device directly stops at a high speed. The maintenance frequency for stop can be enabled by setting P90.29 to a value greater than 0. You can set the maintenance frequency through P90.30. The timing diagram is as follows:



D. If two segments of ACC/DEC time are used, you can increase ACC/DEC time at low frequency running to ensure smoothness at low-frequency start or stop. You can set P08.19 (Switching frequency of ACC/DEC time) to a value greater than 0 to enable two segments of ACC/DEC time and then the ACC/DEC time 1 (P00.11 and P00.12) and ACC/DEC time 2 (P08.00 and P08.01) are used.

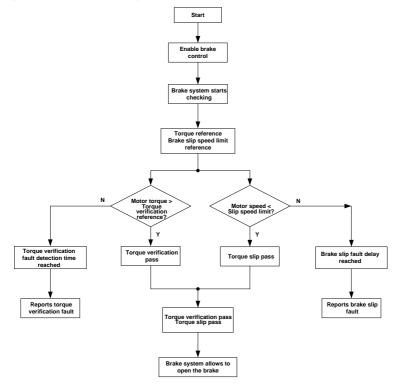
5.11.2 Brake function in open/closed-loop vector control

- 1. Set P90.04 to 1 to enable the brake function.
- 2. Set relay brake output. If RO1 is connected to the braking contactor, set P06.03 to 49.
- 3. If the brake contactor has the feedback function, connect the brake feedback wire to an input terminal, for example, S6. Then set P25.02 to 75 indicating brake feedback signal. Set P90.31 to 1 to enable brake feedback detection. In closed-loop mode, the brake current monitoring function is enabled automatically. If a brake exception occurs, a protection method is applied depending on the present current and the value of P90.34. Skip this step if the braking contactor has no feedback function.
- 4. Set P90.14 (Forward brake release torque) and P90.13 (Reverse brake release torque) to ensure there is enough torque before the brake is opened. You do not need to set P90.12 and P90.13. In closed-loop mode, you can set P93.00 (Brake slip speed threshold) to check whether the braking torque is enough.
- 5. Set the brake timing, including the forward/reverse brake release frequency, forward/reverse brake closing frequency, delay before forward brake release (T1), delay before reverse brake release (T5), delay after forward brake release (T2), delay after reverse brake release (T6), delay before forward brake closing (T3), delay before reverse brake closing (T7), delay after forward brake closing (T4), and delay after reverse brake closing (T8).
- In closed-loop mode, you can decrease the brake release frequency and brake closing frequency and adjust the T1–T8 delay parameters in the timing sequence.
- 7. Perform trial run and check whether the brake timing is correct.



Open/closed loop vector control mode

5.11.3 Description about torque verification and brake slip


After the VFD runs, the VFD output current or torque is checked before the brake release. If the VFD output current or torque is greater than the output current or torque setting (P90.12 or P90.15) and the situation lasts 60ms, torque verification succeeds. If torque verification does not pass after the

torque verification time P90.30 is reached, the torque verification fault tPF is reported.

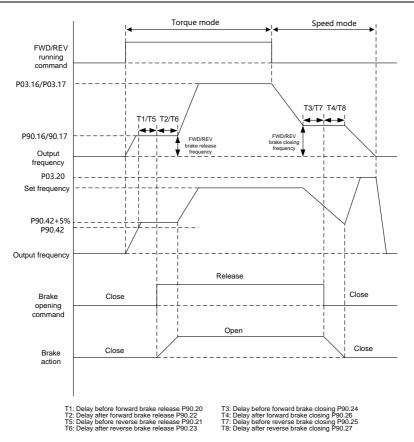
In closed-loop mode, if the brake slip fault delay P93.01 is greater than 0, the brake slip detection function is enabled. During torque verification, if the motor (encoder) speed exceeds the set brake slip speed threshold P93.00 and the situation duration exceeds P93.01, the brake failure fault bE is reported.

The torque verification and brake slip flowchart is as follows:

5.11.4 Commissioning parameters

Function code	Name	Description	Default
P90.04	Enabling brake-oriented logic	0–1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0
P90.05	Enabling forward torque for reverse-running start/stop	0x00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable (The reverse-running start direction complies with the command.) 1: Enable (The reverse-running start direction is always the forward-running direction.) Tens place: indicates whether to enable forward torque for reverse-running stop 0: Disable (The reverse-running stop direction complies with the command.) 1: Enable (The reverse-running stop direction is always the forward-running direction.)	0x00
P90.12	Forward brake release current	0.0–200.0% (of the motor rated current)	0.0%
P90.13	Reverse brake release current	0.0–200.0% (of the motor rated current)	0.0%
P90.14	Forward brake release torque	0.0–200.0% (of the motor rated torque)	0.0%
P90.15	Reverse brake release torque	0.0–200.0% (of the motor rated torque)	0.0%
P90.16	Forward brake release frequency	0.00–20.00Hz	3.00Hz
P90.17	Reverse brake release	0.00–20.00Hz	3.00Hz

Function code	Name	Description	Default
	frequency		
P90.18	Forward brake closing frequency	0.00–20.00Hz	3.00Hz
P90.19	Reverse brake closing frequency	0.00–20.00Hz	3.00Hz
P90.20	Delay before forward brake release	0.000–5.000s	0.300s
P90.21	Delay before reverse brake release	0.000–5.000s The value 0 indicates the delay before forward brake release is used.	0.000s
P90.22	Delay after forward brake release	0.000–5.000s	0.300s
P90.23	Delay after reverse brake release	0.000–5.000s The value 0 indicates the delay after forward brake release is used.	0.000s
P90.24	Delay before forward brake closing	0.000–5.000s	0.300s
P90.25	Delay before reverse brake closing	0.000–5.000s The value 0 indicates the delay before forward brake closing is used.	0.000s
P90.26	Delay after forward brake closing	0.000–5.000s	0.300s
P90.27	Delay after reverse brake closing	0.000–5.000s The value 0 indicates the delay after forward brake closing is used.	0.000s
P90.28	Retaining frequency for stop	0.00–50.00Hz	5.00Hz
P90.29	Retaining frequency hold time for stop	0.00–5.000S	0.000s
P90.30	Torque verification fault detection time	0.00–10.000S	6.000s
P90.31	Enabling the monitoring on brake status	0–1 0: Disable	0
P90.32	Brake feedback exception delay (brake feedback detection time)	0.00–20.000S	1.000s
P90.33	Brake monitoring current threshold	0.0%–200.0% 100.0% corresponds to the motor rated current.	100.0%


Function code	Name	Description	Default
P90.34	Enabling speed reference under brake status error	0–1 0: Disable (The brake feedback fault is reported.) 1: Enable (The brake feedback alarm is also reported.)	0
P90.35	Speed reference under brake status error	0.00–50.00Hz	5.00Hz
P90.37	Brake selection for for forward/reverse switchover	0–1 0: No switchover 1: Switchover	0
P93.00	Brake slip speed threshold	1.00–5.00Hz	1.00Hz
P93.01	Brake slip fault delay	0.000–5.000s The value 0 indicates brake slip is not detected, while a non-zero value indicates brake slip is detected.	0.500s

5.11.5 Brake function in torque control

If brake control (P90.04=1) is enabled when the torque mode is used (P03.32=1), the braking logic in the torque mode is enabled. When the VFD runs, the set torque is set based on (P90.42+5.0%). The FWD/REV frequency upper limit in the torque mode is given by the FWD/REV brake release frequency, and the output torque is detected in real mode. If the output torque is equal to or greater than the preset brake opening torque (P90.42), a delay before brake release is performed. When the delay is reached, brake output is performed. Then a delay after brake release is performed. When the delay is reached, the brake timing ends. The set torque and the FWD/REV frequency upper limit in the torque mode are restored to the normal values. That is, the parameters in P03 determine that the VFD runs in the normal torque mode.

During stop, the VFD automatically switches from the torque mode to the speed mode and then decelerates to stop. Then the brake logic uses the brake closing logic in the speed mode.

The brake timing diagram is as follows:

The function code settings are as follows:

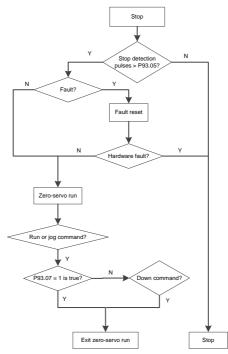
For details about torque control function code settings, see section 6.5.5 Torque control.

The brake function code settings are as follows:

Function code	Name	Description	Setting
P90.04	Enabling brake-oriented logic	1: The brake is controlled by the VFD.	1
P90.05	Enabling forward torque for reverse-running start/stop	0x00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable	0x00

Function code	Name	Description	Setting
		(The reverse-running start direction complies with the command.) 1: Enable (The reverse-running start direction is always the forward-running direction.) Tens place: indicates whether to enable forward torque for reverse-running stop 0: Disable (The reverse-running stop direction complies with the command.) 1: Enable (The reverse-running stop direction is always the forward-running	
P90.16	Forward brake release frequency	direction.) 0.00–20.00Hz	3.00Hz
P90.17	Reverse brake release frequency	0.00–20.00Hz	3.00Hz
P90.18	Forward brake closing frequency	0.00–20.00Hz	3.00Hz
P90.19	Reverse brake closing frequency	0.00–20.00Hz	3.00Hz
P90.20	Delay before forward brake release	0.000–5.000s	0.300s
P90.21	Delay before reverse brake release	0.000–5.000s The value 0 indicates the delay before forward brake release is used.	0.000s
P90.22	Delay after forward brake release	0.000–5.000s	0.300s
P90.23	Delay after reverse brake release	0.000–5.000s The value 0 indicates the delay after forward brake release is used.	0.000s
P90.24	Delay before forward brake closing	0.000–5.000s	0.300s
P90.25	Delay before reverse brake	0.000–5.000s	0.000s

Function code	Name	Description	Setting
	closing	The value 0 indicates the delay before forward brake closing is used.	
P90.26	Delay after forward brake closing	0.000–5.000s	0.300s
P90.27	Delay after reverse brake closing	0.000–5.000s The value 0 indicates the delay after forward brake closing is used.	0.000s
P90.28	Retaining frequency for stop	0.00–50.00Hz	5.00Hz
P90.29	Retaining frequency hold time for stop	0.00–5.000S	0.000s
P90.30	Torque verification fault detection time	0.00–10.000S	6.000s
P90.31	Enabling the monitoring on brake status	0–1 0: Disable	0
P90.32	Brake feedback exception delay (brake feedback detection time)	0.00–20.000S	1.000s
P90.33	Brake monitoring current threshold	0.0%–200.0% 100.0% corresponds to the motor rated current.	100.0%
P90.34	Enabling speed reference under brake status error	0–1 0: Disable (The brake feedback fault is reported.) 1: Enable (The brake feedback alarm is also reported.)	0
P90.35	Speed reference under brake status error	0.00–50.00Hz	5.00Hz
P90.37	Brake selection for forward/reverse switchover	0–1 0: No switchover 1: Switchover	0
P93.00	Brake slip speed threshold	1.00–5.00Hz	1.00Hz
P93.01	Brake slip fault delay	0.000–5.000s The value 0 indicates brake slip is not detected, while a non-zero value indicates brake slip is detected.	0.500s
P90.40	Braking method in open-loop vector control	0–3 0: Common mode 1: Torque mode with limit 1	0

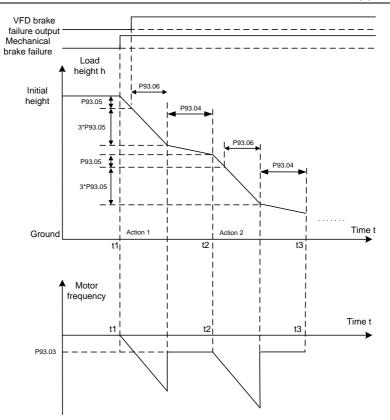

Function code	Name	Description	Setting
		The limit is specified by P90.41.	
		2: Torque/speed switchover mode 1	
		(boost with braking)	
		It is used when P90.04=1 since the	
		brake is involved. When the brake is	
		opened, the speed mode is	
		automatically used.	
		3: Torque/speed switchover mode 2	
		(horizontal moving)	
		Since the brake is not involved, the	
		torque/speed switchover is set	
		through P90.44. The set frequency	
		needs to be greater than P90.44.	
	Torque limit 1 in open-loop vector control	Setting range: 0.0–300.0% (of the	
P90.41		motor rated current)	120.0%
		(P90.40=1 Torque limit mode)	
		0.0–200.0%	
		During the running, when the torque	
		feedback value is equal to or greater	
		than P90.42, brake release timing is	
P90.42	Torque setting for brake release	entered.	50.0%
		(It is valid only when P90.04=1, which	
		indicates the brake is controlled by	
		the VFD, and the VFD uses the	
		torque mode.)	
	Brake closing delay after stop	0.00–50.00HZ	
P90.44	DC braking starts	Used in torque/speed switchover	8.00Hz
	3	mode 2	

5.12 Zero servo

5.12.1 Zero servo function description

The zero servo function needs to be used in closed-loop vector control. During stop, the VFD checks whether the pulse value is greater than P93.05. If yes, the VFD reports the brake failure alarm, and the output can be set through the relay. After the brake failure alarm protection input delay specified by P93.06 (if the pulse value is greater than triple the zero servo tolerance pulse threshold specified by P93.05 within the period, the delay specified by P93.06 is skipped), if P93.02=1 (Zero servo input slows down), the VFD runs downward slowly at the frequency specified by P93.03, and it coasts to stop when the slow lowering hold time specified by P93.04 is reached. Then the VFD performs

detection again and repeats the preceding steps, which are cyclical. If P93.02=3, the hold time is specified by P93.38. When the set time is reached, the zero servo input slows down.


Note:

- At certain faults that cannot be reset, such as VFD internal hardware damaged, zero servo cannot be entered. At the faults that can be reset, with zero servo conditions met, zero servo can be entered.
- Every time zero servo is exited, torque verification is not performed only at the first running command giving, which means the verification is performed at all the following running command giving.
- When P93.02=2, the motor becomes hot, the fan cannot be mounted at the same shaft as the motor, and it must be independently controlled.

One zero servo period consists of the brake detection, brake failure alarm protection input delay, and slow lowering processes.

Zero servo slow lowering mode

The zero servo slow lowering process)(P93.02=1) is as follows:

Note:

Zero speed keeping in zero servo: Setting P93.02=2 makes the motor locked at the positioning function in stop state. This means even if the motor is subjected to external forces, the VFD keeps the motor unmoved and the load stopped at the position where it stops.

Slow lowering after zero servo zero speed is kept: Setting P93.02=3 makes the VFD enter the zero speed keeping mode, of which the hold time is set through P93.38. When the hold time is reached, the slow lowering is automatically used.

5.12.2 Zero	servo function	1 codes
-------------	----------------	---------

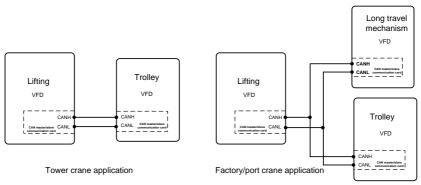
Function code	Name	Description	Setting
		3: Closed-loop vector control mode	
P00.00	Speed control mode	Note: Before using a vector control mode (0, 1,	3
		or 3), enable the VFD to perform motor	

Function code	Name	Description	Setting
		parameter autotuning first.	
P93.02	Zero servo protection mode	 0–3 0: Disable zero servo 1: Zero servo input slows down 2: Zero servo input is always valid (keep running at zero speed) 3: Keep the zero speed (with the duration set through P93.38) and then enter the slow lowering mode 	
P93.03	Brake failure protection frequency	Setting range: <u>P90.17</u> (Reverse brake release frequency)–8.00Hz	
P93.04	Slow lowering hold time	Setting range: 0.0s–30.0s	
P93.05	Zero servo tolerance pulse threshold	Setting range: 0–60000	
P93.06	Brake failure alarm protection input delay	0–20.000s	
P93.07	Brake failure alarm protection reset method	0–1 0: Only for downward running 1: Both for upward and downward running	
P93.08	Enabling height measuring	0–1 0: Disable 1: Enable internal measuring (motor encoder) 2: Enable external measuring (HDI) Note: When <u>P93.08</u> =2, <u>P20.15</u> =0 indicates HDI measuring the height.	
P93.09	Mechanical transmission ratio	Setting range: 0.01-300.00	
P93.10	Suspension ratio	Setting range: 1–4 1: 1:1 2: 1:2 3: Reserved 4: 1:4	

Function code	Name	Description	Setting
P93.11	Rope length compensation	Rope length to compensate the distance from the center of gravity of the weight to the hook. 0.00m–50.00m	
P93.12	Cable diameter	To measure heights correctly in closed-loop mode, the actual running distance of the motor is calculated by using the encoder pulse count. Before first running, the upward limit position must be calibrated. Do as follows: Set the upward limit position terminal, for example, <u>P05.05</u> =64. Then the HDI terminal functions as the upward limit position input. If internal measurement (motor encoder) is enabled, set <u>P93.08</u> =1. Start the tower crane to run upward and stop at the upward limit position. Record the values of <u>P93.14</u> (Initial turns of drum winding) and <u>P93.15</u> (Initial diameter of drum/pulley diameter). In open/closed loop mode, if external measurement (HDI) is enabled, set <u>P93.08</u> =2. Start the tower crane to run upward and stop at the upward limit position. <u>P93.12</u> setting range: 0.1–100.0mm <u>P93.13</u> setting range: 1–200 <u>P93.14</u> setting range: 0– <u>P93.13</u> (Per-layer turns of drum winding) <u>P93.15</u> setting range: 100.0–2000.0mm (Max. drum diameter in upward limit, including cable thickness) <u>P19.15</u> setting range: 0.00–655.35m (hook lowering distance) <u>P19.16, P19.17</u> setting range: 0–65535	
P93.13	Per-layer turns of drum winding	P93.13 setting range: 1–200	
P93.14	Initial turns of drum winding	<u>P93.14</u> setting range: 0– <u>P93.13</u> (Per-layer turns of drum winding)	
P93.15	Initial diameter of	P93.15 setting range: 100.0–2000.0mm	

Function code	Name	Description	Setting
	drum/pulley	(Max. drum diameter in upward limit, including cable	
	diameter	thickness)	
		P19.15 setting range: 0.00–655.35m (hook lowering	
		distance)	
		0x00–0x11	
		Ones place:	
	Enabling	0: The upward limit position is not reached.	
P93.16	upward/downward	1: The upward limit position is reached.	
	limit position check	Tens place:	
		0: The downward limit position is not reached.	
		1: The downward limit position is reached.	
P93.17	Total height	0.00–655.35m (Total height measured from the	
P93.17	measured	upward limit position to the downward limit position)	
		-50.00m–655.35m	
P93.18	Measured height 1	(The downward limit position is used as the	
F 93.10	Measured height i	reference point. During downward limit,	
		<u>P93.18</u> =0.00m)	
	Zero-servo		
P93.38	zero-speed hold	0–60mins	10
	time		

5.13 Anti-sway


The anti-sway function can be enabled by setting P85.00 or input terminal function 90.

This function requires obtaining the height in real time. The height is measured by the VFD in most cases, which is transferred to the bridge and trolley VFDs through the CAN master/slave card. The transferred rope height can be viewed through P94.05.

The algorithm of anti-sway is solidified. You only need to set P85.01 and P85.02. When necessary, you can compensate the rope length by setting P85.03, or adjust P85.04 according to the demand of gear switchover.

The run curve of anti-sway output varies with the value of P85.01.

5.13.1 Wiring

5.13.2 Commissioning procedure of the anti-sway function for tower cranes

- 1. Enable the anti-sway function by setting the trolley VFD function code P85.00=1 or S terminal function 90.
- 2. Set P85.01 and P85.02 of the trolley VFD.
- 3. Set the trolley VFD CAN communication: P28.00=2, configured as the slave, and P28.02=0x116, the height sent from the master to the slave.
- Configure the lifting VFD to measure the height. For details, see section 5.15. After the height measuring, check whether P94.32 (height that the slave receives) and P94.05 (height that the master measures) are the same.
- 5. Perform low-speed trial run.

Note: The rope length can be compensated through P85.03. When there is gear switchover need, you can adjust the value of P85.04.

5.13.3 Commissioning procedure of the anti-sway function for factory cranes

- 1. Set lifting and trolley VFD parameters, which are the same as section 5.12.2.
- 2. Set bridge VFD parameters, which are the same as trolley VFD parameters.

5.13.4 Macro parameters

Trolley and long-travel mechanism VFD parameters

Function code	Name	Description	Setting
P85.00	Enabling anti-sway	1: Enable	1
P85.01	Pendulum reduction mode	0–3 0: Pendulum reduction mode 0 1: Pendulum reduction mode 1 2: Pendulum reduction mode 2	0

Function code	Name	Description	Setting
		3: Pendulum reduction mode 3 Note: For the pendulum reduction duration, Pendulum reduction mode 3 > Pendulum reduction mode 2 > Pendulum reduction mode 1 > Pendulum reduction mode 0	
P85.02	K coefficient (Damping ratio calculation)	0–1000	100
P85.03	Height (rope length) compensation value	0.00–30.00m	0.00
P85.04	Gear switchover filtering delay	0.000–10.000s	0.000
P94.05	Measured height	0.00–655.35m (hook lowering distance) (As the master in master/slave control, it sends this value.)	0.00
P94.31	Anti-sway status	0: No anti-sway 1: In anti-sway state	0
P94.32	Obtained rope length	0–600.0m (As the slave in master/slave control, it receives this value.)	0
P94.33	Rope length with compensation	0–600.0m	0
P28.00	Master/slave mode	2: The local device is the slave.	2
P28.01	Master/slave communication data selection	0: CAN	0
P28.02	Master/slave control mode	Ones place: Master/slave running mode selection 6: Master/slave mode 6 Used for master/slave height transfer, in which the master sends the measured height to the slave. (You can check P94.05 to obtain the height sent from the master and P94.32 to obtain the height sent to the slave.) Tens place: Slave start command source 0: Master 1: Determined by <u>P00.01</u>	0x116

_

Function code	Name	Description	Setting
		Hundreds place: Whether to enable master/slave to send/receive data	
		0: Enable	
		1: Disable	

Lifting VFD parameters

Π

Communica P28.00 P28.01	Ation Master/slave mode Master/slave communication data selection	1: The local device is the master. 0: CAN	1
	Master/slave communication data		
P28.01	communication data	0: CAN	0
P28.01		0: CAN	0
	selection		
P28.02	Master/slave control mode	Ones place: Master/slave running mode selection 6: Master/slave mode 6 Used for master/slave height transfer, in which the master sends the measured height to the slave. (You can check P94.05 to obtain the height sent from the master and P94.32 to obtain the height sent to the slave.) Tens place: Slave start command source 0: Master 1: Determined by <u>P00.01</u> Hundreds place: Whether to enable master/slave to send/receive data 0: Enable 1: Disable	0x116
Height mea	surina		
P93.08	Enabling height measuring	0–1 0: Disable 1: Enable internal measuring (motor encoder) (In closed-loop mode, the encoder measures the speed and height.) 2: Enable external measuring (HDI) (In open- and closed-loop modes, the pulley encoder measures the height.)	1

Function code	Name	Description	Setting
		HDI measuring the height.	
P93.09	Mechanical transmission ratio	0.01–300.00	10.00
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00–50.00m	0.00
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.13	Per-layer turns of drum winding	1–200	30
P93.14	Initial turns of drum winding	0–P93.11 (Per-layer turns of drum winding)	0
P93.15	Initial diameter of drum diameter	100.0–2000.0mm (Max. drum diameter in upward limit, including cable thickness)	600.0mm
P93.16	Enabling upward/downward limit position check	0x00–0x11 Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. Note: Used for height measuring without upward or downward limit device.	0x00
P94.05	Measured height	0.00–655.35m (hook lowering distance) (As the master in master/slave control, it sends this value.)	0.00
P94.06	Hight bits of measured height count value	0–65535	0
P94.07	Low bits of measured height count value	0–65535	0

5.14 Master/slave control

5.14.1 Function description

Master/slave control is classified into power balance and speed synchronization.

1. Master/slave power balance

Master/slave power balance is a control method that distributes the load between two or more motors to achieve even balance. When a transmission device is driven by two or more motors, and two or

more motor shafts are coupled with each other through gears, chains or conveyor belts, it is necessary to distribute the load between the motors through the master/slave control method to meet the control accuracy requirements.

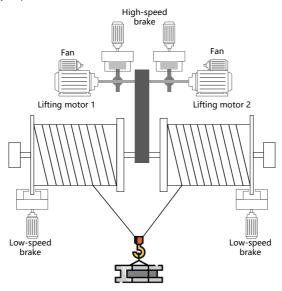


Figure 5-17 Mechanical structure diagram 1

In general, if multiple VFDs control multiple motors through belt connection, it is considered as flexible connection (or soft connection). When flexible connection is applied, generally, the slave adopts the speed control mode, and then the droop function is used to achieve better power balance performance. Therefore, in the terminal master/slave mode, master/slave mode a is recommended; in the CAN communication master/slave mode, master/slave mode 0 is recommended.

In general, if multiple VFDs control multiple motors through shaft, gear, or chain connection, it is considered as rigid connection (or hard connection). When rigid connection is applied, generally, the slave adopts the torque control mode for better power balance performance. Therefore, in the terminal master/slave mode, master/slave mode b is recommended; in the CAN communication master/slave mode, master/slave mode 1 is recommended.

2. Master/slave speed synchronization

Master/slave speed synchronization is used for the speed synchronization between two motors. Using the function requires that both motors have the encoder installed, and the VFD has the encoder pulse counting function. The mechanical structure is shown in the following figure:

Goodrive350-19 series VFD for crane

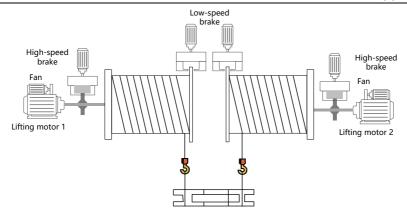


Figure 5-18 Mechanical structure diagram 2

Since master/slave speed synchronization requires speed consistency, the VFD must use the closed-loop mode. Therefore, only master/slave mode 4 in the CAN communication master/slave mode can be used.

5.14.2 Terminal master/slave function

A. Using the VFD high-speed pulse input terminal HDIA and high-speed pulse output terminal HDO to implement simplified master/slave control

The wiring diagram is as follows.

1. Terminal master/slave mode a

The master adopts the speed control mode and sends the ramp frequency to the slave HDIA terminal through the HDO terminal. The slave adopts the speed control mode and the frequency reference is set by the HDIA terminal. Then, adjust reduction ratio of droop control P08.30 of the salve to meet power balance.

Master parameters:

Function code	Name	Description	Setting
P06.00	HDO output type	0: Open collector high-speed pulse output 1: Open collector output	0
P06.16	HDO high-speed pulse output	2: Ramp reference frequency	2
P06.27	HDO output lower limit	-300.0% <u>P06.29</u>	0.00%
P06.28	HDO output corresponding to lower limit	0.00–50.00Hz	0.00kHz
P06.29	HDO output upper limit	<u>P06.27</u> –100.0%	100.0%
P06.30	HDO output corresponding to upper limit	0.00–50.00Hz	50.00 kHz

Slave parameters:

Function code	Name	Description	Setting		
P00.06	Setting channel of A	0–15	4		
P00.06	frequency command	4: High-speed pulse HDIA	4		
		Ones place: HDIA input type			
P05.00	HDI input type	0: HDIA is high-speed pulse input	0×00		
P05.00	при при туре	Tens place: HDIB input type	0x00		
		0: HDIB is high-speed pulse input			
		0: Input set through frequency			
P05.38	HDIA high-speed pulse	1: Reserved	0		
F 05.50	input function selection	2: Input set through encoder, used together with	0		
		HDIB			
P05.39	HDIA lower limit	0.000 kHz – P05.41	0.000		
F 05.59	frequency	$0.000 \text{ KHz} = \frac{100.41}{100.41}$	kHz		
	Corresponding setting				
P05.40	of HDIA lower limit	-300.0%–300.0%	0.0%		
	frequency				
P05.41	HDIA upper limit	P05.39–50.000kHz	50.000		
	frequency		kHz		
	Corresponding setting				
P05.42	of HDIA upper limit	-300.0%–300.0%	100.0%		
	frequency				
P08.30	Frequency decrease	0.00–50.00Hz	1.00hz		
	ratio in drop control				

2. Terminal master/slave mode b

The master adopts the speed control mode and sends the torque current to the slave HDIA terminal through the HDO terminal. The slave adopts the torque control mode and the torque reference is set by the HDIA terminal.

Master parameters:

Name	Description	Setting
HDO output type	0: Open collector high-speed pulse output	0
0 · · ·		22
	HDO output type IDO high-speed pulse	HDO output type 0: Open collector high-speed pulse output IDO high-speed pulse 22: Torque current (relative to triple the motor

Slave parameters:

Function code	Name	Name Description			
P03.11	Torque setting method	5: Pulse frequency HDIA	5		
P03.32	Enabling torque control	1: Enable	1		
P05.00	HDI input type	Ones place: HDIA input type 0: HDIA is high-speed pulse input Tens place: HDIB input type 0: HDIB is high-speed pulse input	0x00		

B. Using the VFD analog input terminal (for example, Al1) and analog output terminal (for example, AO1) to implement simplified master/slave control

The wiring diagram is as follows.

1. Analog terminal master/slave mode a

The master adopts the speed control mode and sends the ramp frequency to the slave Al1 terminal through the AO1 terminal. The slave adopts the speed control mode and the frequency reference is set by the Al1 terminal. Then, adjust reduction ratio of droop control P08.30 of the salve to meet power balance.

Master parameters:

Function code	Name	Description	Setting
P06.14	AO1 output	2: Ramp reference frequency	2
P06.17	AO1 output lower limit		0.0%
	AO1 output		
P06.18	corresponding to lower	Setting range of <u>P06.17</u> : -300.0%– <u>P06.19</u>	0.00V
	limit	P06.18 setting range: 0.00V–10.00V	
P06.19	AO1 output upper limit	P06.19 setting range: P06.17-100.0%	100.0%
	AO1 output	P06.20 setting range: 0.00V–10.00V	
P06.20	corresponding to upper	P06.21 setting range: 0.000s–10.000s	10.00V
	limit		
P06.21	AO1 output filter time		0.000s

Slave parameters:

.

Function code	Name	Description	Setting
P00.06	Setting channel of A frequency command	1: Al1	1
P05.24	AI1 lower limit		0.00V
P05.25	Corresponding setting of AI1 lower limit	P05.24 setting range: 0.00V– <u>P05.26</u> P05.25 setting range: -300.0% –300.0%	0.0%
P05.26	AI1 upper limit	P05.26 setting range: P05.24-10.00V	10.00V
P05.27	Corresponding setting of AI1 upper limit	P05.27 setting range: -300.0% –300.0% P05.28 setting range: 0.000s–10.000s	100.0%
P05.28	AI1 input filter time		0.030s
P08.30	Frequency decrease ratio in drop control	0.00–50.00Hz	1.00hz

2. Analog terminal master/slave mode b

The master adopts the speed control mode and sends the torque current to the slave Al1 terminal through the AO1 terminal. The slave adopts the torque control mode and the torque reference is set by the Al1 terminal.

Master parameters:

Function code	Name	Description	Setting
P06.14	AO1 output	22: Torque current (relative to triple the motor rated current)	22
P06.17	AO1 output lower limit	Setting range of <u>P06.17</u> : -300.0%– <u>P06.19</u>	0.0%
P06.18	AO1 output	P06.18 setting range: 0.00V–10.00V	0.00V

Function code	Name	Description	Setting
	corresponding to lower	P06.19 setting range: P06.17-100.0%	
	limit	P06.20 setting range: 0.00V–10.00V	
P06.19	AO1 output upper limit	P06.21 setting range: 0.000s–10.000s	100.0%
	AO1 output		
P06.20	corresponding to upper		10.00V
	limit		
P06.21	AO1 output filter time		0.000s

Slave parameters:

Function code	Name	Description	Setting
P03.11	Torque setting method	2: Al1	2
P03.32	Enabling torque control	Enabling torque control 1: Enable	
P05.24	AI1 lower limit		0.00V
P05.25	Corresponding setting of AI1 lower limit	P05.24 setting range: 0.00V– <u>P05.26</u> P05.25 setting range: -300.0% –300.0%	0.0%
P05.26	AI1 upper limit	P05.26 setting range: P05.24-10.00V	10.00V
P05.27	Corresponding setting of Al1 upper limit	P05.27 setting range: -300.0% –300.0% P05.28 setting range: 0.000s–10.000s	100.0%
P05.28	AI1 input filter time		0.030s

Note: When the terminal master/slave function is used, commissioning is unrelated to P28.

5.14.3 Master/slave communication

The VFDs can implement the master/slave control function by using the CAN master/slave communication card. The wiring diagram is as follows.

Master			Slave
VFD			VFD
CAN master/slave communication card	CANH CANL	·	CAN CANH master/slave communication card

The specific CAN communication master/slave modes are: master/slave mode 0–2 are master/slave power balance modes, master/slave mode 4 is the master/slave speed synchronization mode, and master/slave mode 3 is reserved. Master/slave mode 0 and master/slave mode 1 are used often.

1. Master/slave mode 0 (P28.02 ones place=0)

Basic principle: Both the master and slave adopt the speed control mode, and the power balance is achieved by the droop control.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 0 both for the master and slave to select master/slave mode 0, and adjust P28.03 for the slave based on the actual situation.

The master sends the running command and speed to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the speed given by the master. At this time, adjust the droop frequency of the slave P08.30 to meet the power balance requirement.

2. Master/slave mode 1 (P28.02 ones place=1)

Basic principle: The master and slave must use the vector control mode of the same type, the master uses speed control, and the slave will be forced to use the torque control mode.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 1 both for the master and slave to select master/slave mode 1, and adjust P28.04 for the slave based on the actual situation. The slave will be switched to torque mode automatically, and therefore P03 parameters do not need to be adjusted.

The master sends the running command and speed to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the torque given by the master.

3. Master/slave mode 2 (Combined mode, P28.02 ones place=2)

Basic principle: The slave starts in the speed control mode (master/slave mode 0) and then switches to the torque mode (master/slave mode 1) at a certain frequency point.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 2 both for the master and slave to select master/slave mode 2, and adjust P28.03 and P28.04 for the slave based on the actual situation. In addition, set P28.05.

The master sends the running command, speed and torque to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the speed given by the master if the switching frequency point is not reached but runs according to the torque given by the master if the switching frequency point is reached.

4. Master/slave mode 3 (Reserved)

5. Master/slave mode 4 (Closed-loop master/slave mode, speed synchronization mode)

Basic principle: In the position synchronization mode, speed synchronization means to compare the position pulse counts of the master and slave and correct the position pulse error at the slave side so as to reduce the error to 0. The master and slave must be equipped with encoders. The master and slave adopt speed control, using position pulse difference for speed correction.

Commissioning method:

Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, and set the ones place of P28.02 to 4 both for the master and slave to select master/slave mode 4.

If there is a transmission ratio between the slave and master, set the P28.07, P28.08 and P28.09. When the pulse difference between the slave and master is greater than P28.09, a fault is reported directly. When the pulse difference between the slave and master is less than P28.08, speed correction is not performed. When the pulse difference between the slave and master is greater than P28.08 but less than P28.09, speed correction is performed, and adjust P28.12, P28.13, and P28.14 when necessary. In addition, you can set P28.10.

The master sends the running command, speed, and position pulse to the slave through CAN communication. The slave performs speed correction by comparing the local position pulse with the position pulse sent from the master.

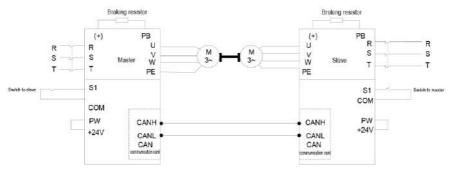
Note:	Open-loop	vector	control	is	applicable	only	to	master/slave	modes	0–3,	while
closed	l-loop vector	r control	is applic	cab	le to all the i	maste	r/sla	ave modes.			

Function code	Name	Default		
P28.00	Master/slave mode	0: Master/slave control is invalid. Master/slave mode 1: The local device is the master. 2: The local device is the slave.		
P28.01	Master/slave mode selection	0: CAN 1: Reserved	0	
P28.02	Master/slave control mode	Ones place: Master/slave running mode selection 0: Master/slave mode 0 The master and slave use speed control, with power balanced through droop control. 1: Master/slave mode 1 (The master and slave must be in the same type of vector control. When the master is in speed control, the slave is forced into torque control.) 2: Combined mode (Master/slave mode 2) The slave switches from speed mode (master/slave mode 0) to torque mode (master/slave mode 0) to torque mode (master/slave mode 1) at a frequency point. 3: Master/slave mode 3 (Reserved) (Both the master and slave adopt speed control, and the slave performs power balance	0x001	

Function code	Name	Description	Default
		depending on the speed loop integral result of	
		the master.)	
		4: Closed-loop master/slave mode	
		(Master/slave mode 4)	
		The master and slave must be equipped with	
		encoders. The master and slave adopt speed	
		control, using position pulse difference for	
		speed correction.	
		5: Master/slave mode 5	
		(Both the master and slave adopt closed-loop	
		speed control, and the slave performs power	
		balance depending on the speed loop of the	
		master.)	
		Tens place: Slave start command source	
		0: Master	
		1: Determined by P00.01	
		Hundreds place: Whether to enable	
		master/slave to send/receive data	
		0: Enable	
		1: Disable	
		It is a percentage of the master ramp frequency.	
		When the master and slave are different in the	
P28.03	Slave speed gain	DEC ratio: 0.0–500.0%	100.0%
		When the master and slave are the same in the	
		DEC ratio: 100.0%	
		It is a percentage of the set frequency of the	
		master.	
D 00.04		When the master and slave are different in the	100.00/
P28.04	Slave torque gain	motor power: 0.0–500.0%	100.0%
		When the master and slave are the same in the	
		motor power: 100.0%	
	Frequency point for		
	switching between		
P28.05	speed mode and	0.00–10.00Hz	5.00
	torque mode in		
	master/slave mode 2		
P28.06	Number of slaves	0–15	1
P28.07	Master/slave	0.00–100.00	1.00

Function code	Name	Description	Default
	transmission unit pulse ratio for position synchronization		
P28.08	Position synchronization deviation deadzone setting	0–50000 When the position difference is greater than P28.08, correction on the slave is valid.	50
P28.09	Position synchronization deviation threshold	0–50000 When the position difference is greater than P28.09, a master/slave position fault is reported.	1000
P28.10	Position synchronization regulator output limit	0.0–100.0%	5.0%
P28.11	Position synchronization pulse count reset method	0–1 0: Automatic During stop, the position synchronization pulse count is automatically reset. 1: Terminal based If the input terminal selects the position synchronization pulse count reset function, the pulse count is automatically reset when there is signal input.	0
P28.12	Position synchronization proportional coefficient	0.000–10.000	0.005
P28.13	Position synchronization integral time	0.01–80.00s	8.00s
P28.14	Position synchronization filtering time	0.00–10.00s	0.05s

5.14.4 Master/slave switchover


1. Normal master/slave switchover work conditions

Application description: Both the master VFD and slave VFD drive a motor, but in certain cases, the master and slave must be switched over.

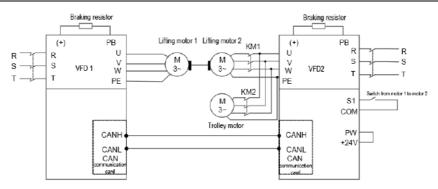
Commissioning description: Set an S (for example, S1) terminal of the master to 72, and an S (for

example, S1) terminal of the slave to 71. Enable the S1 terminal of the master to make the master working as the slave. Enable the S1 terminal of the slave to make the slave working as the master. If different parameters need to be set for the master and slave, you can set P90.03.

Note: Refer to section 5.13.4 Macro parameters to set master and slave parameters. The following mainly describes the master/slave switchover.

Master parameters:

Function code	Name	Description	Setting
P05.01	Function of S1	72: Switch to the slave	72
P90.03	Method for terminals to switch application macros	3: Switch from the master to the slave	3


Slave parameters:

Function code	Name	Description	Setting
P05.01	Function of S1	71: Switch to the master	71
P90.03	Method for terminals to switch application macros	4: Switch from the salve to the master	4

2. Motor and master/slave switchover work conditions

For example, in the lifting job of port crane, VFD 1 as the master drives lifting motor 1, while VFD 2 as the slave drives lifting motor 2. After completing the lifting job, VFD 2 needs to drive the trolley motor independently. At this time, the master/slave mode must be disabled for VFD 2, and the parameters of lifting motor 2 and trolley motor must be switched also, while VFD 1 can still use the master/slave mode.

Note: The power supply switchover of lifting motor 2 and trolley must be controlled by the PLC.

Commissioning procedure

- Set P90.00=6 (User-defined macro 1) for VFD 2, set the parameters for lifting motor 2 according to the following table of user-defined application macro parameter settings, and note that A81.24=2 (Slave mode).
- Set P90.01=7 (User-defined macro 2) for VFD 2, set the parameters for trolley motor according to the following table of user-defined application macro parameter settings, and note that A82.24=0 (Disable master/slave mode).
- When the S1 terminal of VFD 2 is invalid, VFD 2 drives lifting motor 2 and VFD 1 drives lifting motor 1 to complete the lifting work. When the S2 terminal of VFD 2 is valid, VFD 2 drives the trolley motor to work.

Motor run status	VFD 1	VFD 2	KM1	KM2	VFD 2 Terminal S1	Lifting motor 1	Lifting motor 2	Trolley motor
Lifting run	Master P28.00=1	Slave A81.24=2 P28.00=2	Closed	Opened	Invalid	Run	Run	Stop
Trolley run	Master/ slave control is invalid. P28.00=0 Modified through the PLC	Master/ slave control is invalid. A82.24=0 (P28.00=0) Swithed over through S1	Opened	Closed	Valid	Stop	Stop	Run Switched over through S1

Note: The value of P28.00 of VFD 1 needs to be modified through the PLC.

At the work conditions of trolley run, if it is difficult to change VFD 1 from master/slave control mode to non master/slave control mode (P28.00=0) through the PLC, you can set the hundreds place of P28.02 to 1 for VFD 1.

Parameters of VFD 2

Function code	Name	Description	Setting
P05.01	Function of S1	35: Switch from motor 1 to motor 2	35
P90.00	Hoisting application macro setting	8: User-defined application macro 1	6
P90.01	Terminal-switched application macro setting	 User-defined application macro 1 User-defined application macro 2 	7
P90.03	Method for terminals to switch application macros	1: Switch from motor 1 to motor 2	1
A81.24	Master/slave mode	2: The local device is the slave.	2

5.14.5 User-defined application macros

You can enter user-defined application macro settings through P90.02.

Function code	Name	Description	Default
P90.02	User-defined application macro setting	0–3 0: None 1: Enter the settings of user-defined application macro 1 2: Enter the settings of user-defined application macro 2 3: Enter the settings of user-defined application macro 3	0

When P90.02=1, you will automatically enter A80.00-A80.41 to set related function codes.

When P90.02=2, you will automatically enter A81.00-A81.41 to set related function codes.

When P90.02=3, you will automatically enter A82.00-A82.41 to set related function codes.

Currently, there are 45 common function codes available for you to define macros. The three user-defined macro tables are the same. The following lists A81.00–A81.41.

User-defined function	Related function code	Name	Description	Setting range	Default
A81.00	P00.00	Speed control	0: Sensorless vector	0–3	2
A81.00	F 00.00	mode	control (SVC) mode 0	0-3	2

Commissioning guidelines

User-defined function	Related function code	Name	Description	Setting range	Default
			1: Sensorless vector		
			control (SVC) mode 1		
			2: V/F control		
			3: Closed-loop vector		
			control mode		
		Channel of	0: Keypad		
A81.01	P00.01	running	1: Terminal	0–2	0
		commands	2: Communication		
		Setting channel	0: Keypad		
A81.02	P00.06	of A frequency	1–14: See chapter 7.	0–15	0
		command	15: Multi-step speed run		
A81.03	P00.11	ACC time 1	0.0–3600.0s	0.0–3600.0	10.0s
A81.04	P00.12	DEC time 1	0.0–3600.0s	0.0–3600.0	10.0s
A81.05	P01.05	ACC/DEC mode	0: Linear	0–1	0
			1: S curve		
A81.06	P01.08	Stop mode	0: Decelerate to stop	0–1	0
			1: Coast to stop		
A81.07	P03.32	Enabling torque	0: Disable	0–1	0
		control	1: Enable		
A81.08	P04.40	Enabling I/F	0–1	0–1	0
		mode for AM 1			
		Forward current			
A81.09	P04.41	setting in I/F	0.0–200.0%	0.0–200.0%	120.0%
		mode for AM 1			
		Reverse current			
A81.10	P04.52	setting in I/F	0.0–200.0%	0.0–200.0%	120.0%
		mode for AM 1			-
A81.11	P05.03	Function of S3	0: No function	0–90	0
			1: Run forward		
A81.12	P05.04	Function of S4	2: Run reversely	0–90	0
			3–90: See chapter 7.		
A81.13	P06.01	Y1 output	0: Invalid	0–64	0
A81.14	P06.03	RO1 output	1: Running	0–64	0
			2: Running forward		
A81.15	P06.04	RO2 output	3: Running reversely	0–64	0
			4–64: See chapter 7.		

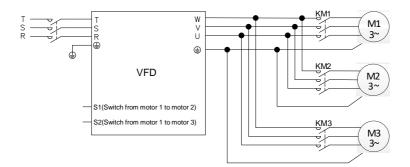
Commissioning guidelines

User-defined function	Related function code	Name	Description	Setting range	Default
A81.16	P10.02	Multi-step speed 0	0.0–100.0%	0.0–100.0	0.0%
A81.17	P10.04	Multi-step speed 1	0.0–100.0%	0.0–100.0	0.0%
A81.18	P10.06	Multi-step speed 2	0.0–100.0%	0.0–100.0	0.0%
A81.19	P10.08	Multi-step speed 3	0.0–100.0%	0.0–100.0	0.0%
A81.20	P10.10	Multi-step speed 4	0.0–100.0%	0.0–100.0	0.0%
A81.21	P25.01	Function of S5		0–90	0
A81.22	P25.02	Function of S6	Same as P5	0–90	0
A81.23	P25.03	Function of S7		0–90	0
A81.24	P28.00	Master/slave mode	0: The master/slave mode is invalid.1: The local device is the master.2: The local device is the slave.	0–2	0
A81.25	P90.04	Enabling brake-oriented logic	0–1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0–1	0
A81.26	P90.05	Enabling forward torque for reverse-running start/stop	0x00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable (The reverse-running start direction complies with the command.) 1: Enable (The reverse-running	0x00–0x11	0x00

Goodrive350-19 series VFD for crane

Commissioning guidelines

User-defined function	Related function code	Name	Description	Setting range	Default
			start direction is always		
			the forward-running		
			direction.)		
			Tens place: indicates		
			whether to enable		
			forward torque for		
			reverse-running stop		
			0: Disable		
			(The reverse-running		
			stop direction complies		
			with the command.)		
			1: Enable		
			(The reverse-running		
			stop direction is always		
			the forward-running		
			direction.)		
	500.00	Graded			0.00/
A81.27	P90.06	multi-step speed	0.0–100.0%	0.0–100.0	0.0%
		reference 0			
A81.28	P90.07	Graded	0.0.100.0%	0.0–100.0	0.0%
A01.20	P90.07	multi-step speed reference 1	0.0–100.0%	0.0-100.0	0.0%
		Graded			
A81.29	P90.08	multi-step speed	0 0–100 0%	0.0–100.0	0.0%
7101120	1 00.00	reference 2		0.0 100.0	0.070
		Graded			
A81.30	P90.09	multi-step speed	0.0–100.0%	0.0–100.0	0.0%
		reference 3			
		Graded			
A81.31	P90.10	multi-step speed	0.0–100.0%	0.0–100.0	0.0%
		reference 4			
404.00	D00.40	Forward brake	0.0–200.0% (of the	0.0.000.0	0.00/
A81.32	P90.12	release current	motor rated current)	0.0–200.0	0.0%
A81.33	P00 42	Reverse brake	0.0–200.0% (of the	0.0.200.0	0.0%
A01.33	P90.13	release current	motor rated current)	0.0–200.0	
A81.34	P90.14	Forward brake	0.0–200.0% (of the	0.0–200.0	0.0%


User-defined function	Related function code	Name	Description	Setting range	Default
		release torque	motor rated torque)		
A81.35	P90.15	Reverse brake release torque	0.0–200.0% (of the motor rated torque)	0.0–200.0	0.0%
A81.36	P90.16	Forward brake release frequency	0.00–20.00Hz	0.00–20.00	3.00Hz
A81.37	P90.17	Reverse brake release frequency	0.00–20.00Hz	0.00–20.00	3.00Hz
A81.38	P90.18	Forward brake closing frequency	0.00–20.00Hz	0.00–20.00	3.00Hz
A81.39	P90.19	Reverse brake closing frequency	0.00–20.00Hz	0.00–20.00	3.00Hz
A81.40	P90.20	Delay before forward brake release	0.000–5.000s	0.000–5.000	0.300s
A81.41	P90.22	Delay after forward brake release	0.000–5.000s	0.000–5.000	0.300s
A81.42	P90.24	Delay before forward brake closing	0.000–5.000s	0.000–5.000	0.300s
A81.43	P90.26	Delay after forward brake closing	0.000–5.000s	0.000–5.000	0.300s
A81.44	P90.31	Enabling the monitoring on brake status	0–1 0: Disable 1: Enable the brake current monitoring (and brake feedback detection).	0–1	0
A82.00-A82.44	With the same	functions as A81.	00–A81.44		
A83.00-A83.44	With the same	functions as A81.	00–A81.44		

5.15 Motor and macro switchover

5.15.1 Function description

The VFD provides three sets of motor parameters, and you can switch between motors through the terminal switching function. First, you need to set the ones place of P08.31 to 0, and then use input terminal function 35 (switching motor 1 to motor 2) and input terminal function 88 (switching to motor 3) to perform motor switchover.

In addition, application macros can be switched. Set P90.03 to set the terminal-based method of switching application macros, and set P90.00 and P90.01 to select application macros. After the corresponding motor is switched, the application macro is switched accordingly.

Note:

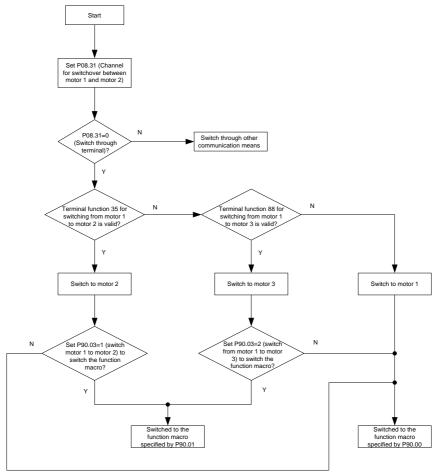
- Switching from motor 1 to motor 2 takes priority over switching from motor 1 to motor 3. That is, the signal for switching from motor 1 to motor 3 is detected only after no signal for switching from motor 1 to motor 2 is detected.
- The motor parameters for motor 2 are separate from those for motor 3. Group P12 and group P29 contain motor parameters for motor 2 and motor parameters for motor 3. However, motor 2 and motor 3 use similar parameters for control modes, such as VF and vector control parameters.
- During motor switching, the terminals to which application macros have assigned values cannot be used for switching. Otherwise, if an application macro changes the value assigned to a terminal, the value is overwritten, resulting in switching failure.

5.15.2 Description about switching from motor 2 to motor 3

The terminal input function does not contain the ability to switch from motor 2 to motor 3. To switch from motor 2 to motor 3, remove the signal for switching from motor 1 to motor 2, and then input the signal for switching from motor 1 to motor 2 and switching from motor 1 to motor 3 are given simultaneously, the signal for switching from motor 1 to motor 1 to motor 2 is affected since the switching from motor 1 to motor 2 has higher priority (as mentioned earlier), and motor 2 is used automatically.

Example

If S1 is set to have terminal function 35 (for switching from motor 1 to motor 2) and S2 is set to have terminal function 88 (for switching from motor 1 to motor 3), there are four types of combination:


S1 status	S2 status	Present motor status Contactor switch status		
OFF	OFF	Switched to motor 1	KM1 closed, KM2 opened, KM3 opened	
ON	OFF	Switched to motor 2	KM1 opened, KM2 closed, KM3 opened	
OFF	ON	Switched to motor 3	KM1 opened, KM2 opened, KM3 closed	
ON	ON	Switched to motor 2	KM1 opened, KM2 closed, KM3 opened	

5.15.3 Motor and macro switchover parameters

Function code	Name	Description	Default
P08.31	Channel for switching between motor 1 and motor 2	0x00-0x14 LED Ones place: Switchover channel 0: Terminal 1: Modbus communication 2: PROFIBUS/CANopen/DeviceNet communication (same as the above) 3: Ethernet communication (same as the above) 4: EtherCAT/Profinet communication 5: 216 communication LED tens place: indicates whether to enable switchover during running 0: Disable 1: Enable	0x00
P90.00	Hoisting application	0–15 0: Common application mode	0
P90.01	macro setting Terminal-switched application macro setting	 0: Common application mode 1: Lifting mode 1 (in open-loop vector control) 2: Lifting mode 2 (in closed-loop vector control) 3: Horizontal moving mode (in space voltage vector control) 4: Tower crane slewing mode 5: Conical motor application mode 6: User-defined application macro 1 7: User-defined application macro 2 8: User-defined application macro 3 9: Lifting mode 3 (in space voltage vector control) 10: Construction elevator mode 	0

Function code	Name	Description	Default	
		11: Closed-loop winching (for lifting in mineral		
		wells and winches)		
		12: Open-loop winching (for lifting in mineral		
		wells and winches)		
		13: Construction elevator mode 2 (for medium-speed elevator application)		
		14: Tower crane slewing without vortex in closed-loop vector control		
		15: Tower crane slewing without vortex in space		
		voltage vector control		
	User-defined application macro setting	0–3		
		0: None		
		1: Enter the settings of user-defined application		
P90.02		macro 1	0	
P90.02		2: Enter the settings of user-defined application	0	
		macro 2		
		3: Enter the settings of user-defined application		
		macro 3		
		0–5		
		0: No switchover		
	Method for terminals to	1: Switch from motor 1 to motor 2		
P90.03	switch application	2: Switch from motor 1 to motor 3	0	
1 30.03	macros	3: Switch from the master to the slave	Ĵ	
	macros	4: Switch from the salve to the master		
		5: Switch to SVC1 control (open-loop vector		
		control 1)		

5.15.4 Motor and macro switchover flowchart

For user-defined application macros, see section 5.14.5 User-defined application macros.

5.16 Height measuring

- 5.16.1 Commissioning description
- 5.16.1.1 Internal measuring (Motor encoder)

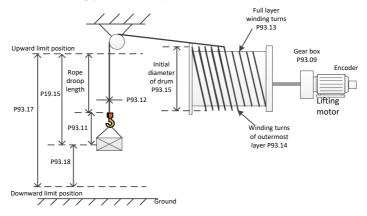


Figure 5-19 Internal measuring (motor encoder), using pulleys

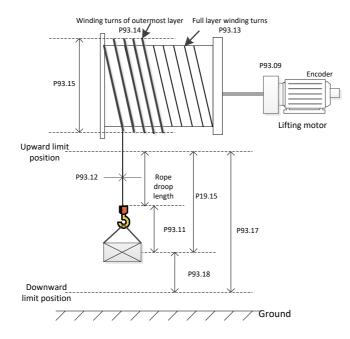


Figure 5-20 Internal measuring (motor encoder), without pulleys

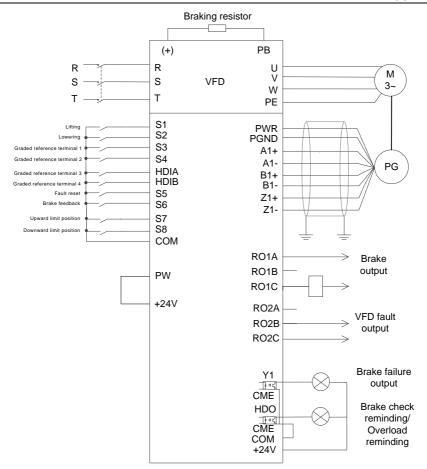


Figure 5-21 Wiring for internal measuring (motor encoder)

According to Figure 5-21, you need to set the suspension ratio P93.10 when pulleys are used, so that the height can be correctly measured in the closed-loop mode. Then the measured encoder pulse count is used to calculate the actual running distance of the motor. Before first running, the upward limit position must be calibrated. You need to use a PG card to connect the encoder (see A.6 for specific connection method), set P00.00=3 (Closed-loop control mode), P93.08=1 to enable internal measuring (motor encoder), and then set winding drum and cable parameters such as P93.09, P93.10, P93.11, P93.12, P93.13, P93.14 and P93.15.

The procedure for first running is as follows:

1. Set the upward limit terminal. For example, set P25.03=64, which indicates the S7 terminal is

used as for upper limit input.

- 2. Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration.
- 3. Record the values of P93.12 and P93.13 and reset P19.15, P19.16, and P19.17.
- 4. After the calibration, send the running command through the S2 terminal to run downward. Check the values of P19.15, P19.16, and P19.17.

If the downward limit position needs to be used as the reference point, the procedure for first running is as follows:

- 1. Set the upward and downward limit terminals S7 and S8. For example, set P25.03=64 and P25.04=65.
- 2. Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration.
- 3. Record the values of P93.12 and P93.13 and reset P19.15, P19.16, and P19.17.
- 4. The calibration is completed, which indicates proper running. P93.17 displays the height from the downward limit position to the upward limit position, P93.18 displays the height using the downward limit position as the reference point (the height is 0 at the downward limit position, the height is positive when it is above the downward limit position, the height is negative when it is under the downward limit position), and P19.15 displays the height using the upward limit position as the reference point (the height is 0 at the upward limit position as the reference point (the height is 0 at the upward limit position, and only downward running is allowed when the upward limit position is not reached).

5.16.1.2 External measuring (HDI)

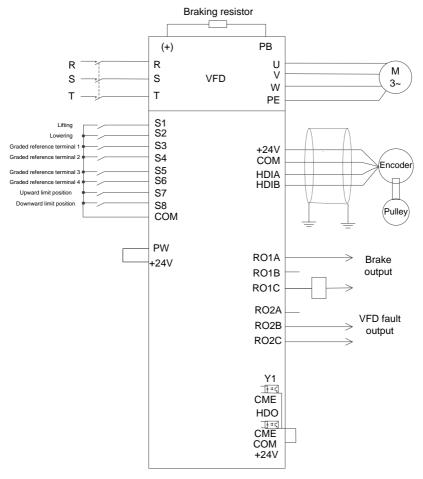


Figure 5-22 Wiring for external measuring (HDI) (In open-loop mode)

Note: During external measuring (HDI), only 24V incremental encoders can be used to measure pulley rotational speeds.

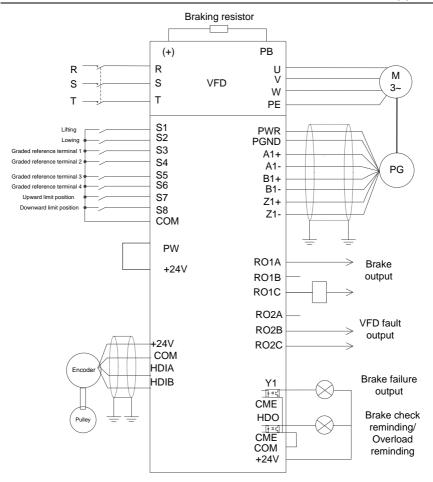


Figure 5-23 Wiring for external measuring (HDI) (In closed-loop mode)

Note: During external measuring (HDI), only 24V incremental encoders can be used to measure pulley rotational speeds.

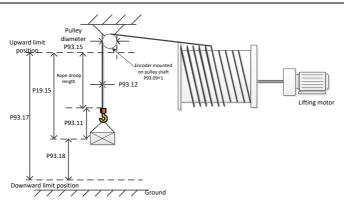


Figure 5-24 External measuring (HDI)

You need to set P05.38=2 and P05.44=2 to connect the encoder to HDIA and HDIB. In open/closed-loop mode, the encoder measures the encoder pulse count at the pulley side to calculate the actual cable running distance of pulley. Before first running, the upward limit position must be calibrated.

The procedure for first running is as follows:

- 1. Set the upward limit terminal. For example, set P25.03=64, which indicates the S7 terminal is used as for upper limit input.
- 2. Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration. Reset P19.15, P19.16, and P19.17.
- After the calibration, send the running command through the S2 terminal to run downward. Check the values of P19.15, P19.16, and P19.17.

If the downward limit position needs to be used as the reference point, the procedure for first running is as follows:

- 1. Set the upward and downward limit terminals S7 and S8. For example, set P25.03=64 and P25.04=65.
- 2. Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration. Reset P19.15, P19.16, and P19.17.
- Send the running command through the S2 terminal to run downward only if the downward limit terminal S8 is valid. P93.17 displays the height from the upward limit position to the downward limit position and P93.18 displays 0.
- 4. The calibration is completed, which indicates proper running. P93.17 displays the height from the downward limit position to the upward limit position, P93.18 displays the height using the downward limit position as the reference point (the height is 0 at the downward limit position, the height is positive when it is above the downward limit position, the height is negative when it is

under the downward limit position), and P19.15 displays the height using the upward limit position as the reference point (the height is 0 at the upward limit position, and only downward running is allowed when the upward limit position is reached, and P19.15 indicates the rope droop length when the upward limit position is not reached).

Note: During external measuring (HDI) (for the encoder to measuring the pulley rotational speed), P93.09 indicates the transmission ratio between the encoder and pulley, while P93.15 indicates the pulley diameter.

5.16.2 Parameters about height measuring

Function			0	
code	Name	Description	Setting	
		0: Sensorless vector control (SVC) mode 0		
		1: Sensorless vector control (SVC) mode 1		
		2: Space voltage vector control mode		
P00.00	Speed control mode	3: Closed-loop vector control mode	3	
		Note: Before using a vector control mode (0, 1,		
		or 3), enable the VFD to perform motor		
		parameter autotuning first.		
	Channel of running	0: Keypad		
P00.01	commands	1: Terminal	1	
	commanus	2: Communication		
P05.01	Function of S1	1: Run forward	1	
P05.02	Function of S2	2: Run reversely	2	
P25.03	Function of S7	64: Limit of forward run (upward)	64	
P25.04	Function of S8	65: Limit of reverse run (downward)	65	
P20.15	Speed	0: Measuring speed by PG card/Measuring height	0	
F20.15	measurement mode	locally	0	
		0–1		
		0: Disable		
		1: Enable internal measuring (motor encoder)		
		(In closed-loop mode, the encoder measures the		
P93.08	Enabling height	speed and height.)	1	
1 33.00	measuring	2: Enable external measuring (HDI)	1	
		(In open- and closed-loop modes, the pulley		
		encoder measures the height.)		
		Note: When P93.08=2, P20.15=0 indicates HDI		
		measuring the height.		
P93.09	Mechanical	0.01–300.00	10.00	
P93.09	transmission ratio		10.00	

Table 5-7 Parameters about internal measuring (motor encoder)

Function code	Name	Description	Setting
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00–50.00m	0.00
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.13	Per-layer turns of drum winding	1–200	30
P93.14	Initial turns of drum winding	0–P93.11 (Per-layer turns of drum winding)	0
P93.15	Initial diameter of drum diameter	100.0–2000.0mm (Max. drum diameter in upward limit, including cable thickness)	600.0mm
P93.16	Enabling upward/downward limit position check	0x00–0x11 Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. Note: Used for height measuring without upward or downward limit device.	0x00
Height sta	atus check		
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position to the downward limit position)	0.00m
P93.18	Measured height 1	-50.00m–655.35m (Using the downward limit position as the reference point)	0.00m
P19.15	Measured height	0.00–655.35m (Hook lowering distance using the upward limit position as the reference point)	0.00m
P19.16	Hight bits of measured height count value	0–65535	0
P19.17	Low bits of measured height count value	0–65535	0

Table 5-8 Parameters about external measuring (HDI)

Function code	Name	Description	Setting
		0: Sensorless vector control (SVC) mode 0	
		1: Sensorless vector control (SVC) mode 1	
		2: Space voltage vector control mode	
P00.00	Speed control mode	3: Closed-loop vector control mode	2
		Note: Before using a vector control mode (0, 1,	
		or 3), enable the VFD to perform motor	
		parameter autotuning first.	
	Channel of running	0: Keypad	
P00.01	commands	1: Terminal	1
	commanus	2: Communication	
		0x00–0x11	
		Ones place: HDIA input type	
		0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is digital input	0x00
		Tens place: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
P05.01	Function of S1	1: Run forward	1
P05.02	Function of S2	2: Run reversely	2
D00.45	Speed	0: Measuring speed by PG card/Measuring height	0
P20.15	measurement mode	locally	0
P25.03	Function of S7	64: Limit of forward run (upward)	64
P25.04	Function of S8	65: Limit of reverse run (downward)	65
P05.38	HDIA high-speed pulse input function selection	2: Input set through encoder, used together with HDIB	2
P05.44	HDIB high-speed pulse input function selection	2: Input set through encoder, used together with HDIA	2
P93.08	Enabling height measuring	0–1 0: Disable 1: Enable internal measuring (motor encoder) (In closed-loop mode, the encoder measures the speed and height.) 2: Enable external measuring (HDI) (In open- and closed-loop modes, the pulley	2

Function code	Name	Description	Setting
P93.09	Mechanical transmission ratio	0.01–300.00	1.00
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00–50.00m	0.00
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.15	Pulley diameter	100.0–2000.0mm	600.0mm
Height status check			
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position)	0.00m
P93.18	Measured height 1	-50.00m–655.35m (Using the downward limit position as the reference point)	0.00m
P19.15	Measured height	0.00–655.35m (hook lowering distance)	0.00m
P19.16	Hight bits of measured height count value	0–65535	0
P19.17	Low bits of measured height count value	0–65535	0

5.17 Temperature measuring

5.17.1 Using PT100/PT100

(1) Through an expansion card

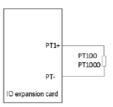


Figure 5-25 PT100/PT1000 measuring temperature through an expansion card

Procedure

- 1. Connect the expansion card EC-IO502-00 to PT100/PT1000.
- Set P92.12=1 to enable PT100 to detect temperature or set P92.12=10 to enable PT1000 to detect temperature. In addition, set P92.13=1 to enable PT100 /PT1000 to detect disconnection.
- 3. Check whether P94.16 (PT100 present temperature) and P94.17 (PT100 present digital) are correct, or check whether P94.18 (PT1000 present temperature) and P94.19 (PT1000 present

digital) are correct.

Function parameter settings

Function code	Name	Description	Setting
P92.12	Enabling PT100/PT1000 temperature detection	Ones place: whether to enable PT100 temperature detection 0: Disable 1: Enable Tens place: whether to enable PT1000 temperature detection 0: Disable 1: Enable	0x01 or 0x10
P92.13	Enabling PT100/PT1000 disconnection detection	Ones place: whether to enable PT100 disconnection detection 0: Disable 1: Enable	0x01
P92.14	PT100 overtemperature protection point	0.0–150.0°C	120.0°C
P92.15	PT100 overtemperature pre-alarm point	0.0–150.0°C	100.0°C
P94.16	PT100 present temperature	-50.0–150.0°C	0.0°C
P94.17	PT100 present digital	0–4096	0
P94.18	PT1000 present temperature	-50.0–150.0°C	0.0°C
P94.19	PT1000 present digital	0–4096	0

(2) Through an AI terminal

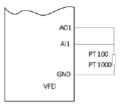
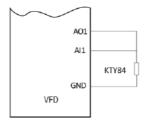
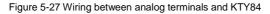


Figure 5-26 Wiring between analog terminals and PT100/PT1000

Note: Turn SW2 on the control board to "I" for current output.

Procedure


- 1. Connect PT100/PT1000 according to the figure.
- 2. Set P92.22=1 to select PT100, or set P92.22=2 to select PT1000.
- 3. Set P92.23 (AI detected motor overtemperature protection threshold) and P92.24 (AIdetected motor overtemperature alarm threshold).
- 4. Check whether P94.20 (AI detected motor temperature) is correct.


Function parameter settings

Function code	Name	Description	Setting
P92.22	Type of sensor for AI to detect motor temperature	1: PT100 2: PT1000	1 or 2
P92.23	AI detected motor overtemperature protection threshold	0.0–200.0°C	110.0
P92.24	AI detected motor overtemperature pre-alarm threshold	0.0–200.0°C	90.0
P92.21	PTC overtemperature selection	 0: The PTC function is enabled through terminal selection. When the PTC overtemperature alarm A-Ptc is reported, this cannot terminate normal running. 1: The PTC function is valid through terminal selection. When the PTC overtemperature fault PtcE is reported, this results in stop. 	0
P94.20	AI detected motor temperature	-20.0–200.0°C	0.0°C

5.17.2 Using KTY84

Through an Al terminal

Note: Turn SW2 on the control board to "I" for current output.

Procedure

- 1. Connect KTY84 according to the figure.
- 2. Set set P92.22=3 to select KTY84.
- 3. Set P92.23 (AI detected motor overtemperature protection threshold) and P92.24 (AI detected motor overtemperature alarm threshold).
- 4. Check whether P94.20 (AI detected motor temperature) is correct.

Function parameter settings

Function code	Name	Description	Setting
P92.22	Type of sensor for AI to detect motor temperature	3: KTY84	3
P92.23	AI detected motor overtemperature protection threshold	0.0–200.0°C	110.0
P92.24	AI detected motor overtemperature pre-alarm threshold	0.0–200.0°C	90.0
P94.20	AI detected motor temperature	-20.0–200.0°C	0.0°C

6 Basic operation guidelines

6.1 What this chapter contains

This chapter instructs you how to use the VFD keypad and commission the VFD common functions.

6.2 Keypad introduction

The keypad is used to control the VFD, read status data, and set parameters.

Figure 6-1 Keypad

Note:

- The LED keypad is a standard part for the VFD. In addition, if you need, the LCD keypad (an
 optional part) can be provided. The LCD keypad supports multiple languages, parameter copying
 function, and ten-row high-definition display. The installation size of the LCD is compatible with
 the LED keypad.
- If you need install the keypad externally (that is, on another position rather than on the VFD), you can use M3 screws to fix the keypad, or you can use the keypad installation bracket to install the keypad. The installation bracket is an optional part for 380V 1.5–30kW and 500V 4–18.5kW VFD models, but it is a standard part for 380V 37–500kW, 500V 22–75kW, and 660V VFD models.

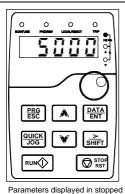
No.	Name	Description			
1	Status	RUN/TUNE	VFD running status indicator. LED off: The VFD is stopped. LED blinking: The VFD is autotuning parameters. LED on: The VFD is running.		
	indicator	FWD/REV	Forward or reverse running indicator. LED off: The VFD is running forward. LED on: The VFD is running reversely.		
		LOCAL/REMOT	Indicates whether the VFD is controlled		

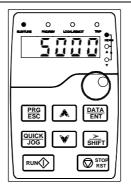
No.	Name		Description					
			through the keypad, terminals, or					
				commun	communication.			
				Off: The	VFD is con	trolled throu	gh the	
				keypad.				
				Blinking:	The VFD is	s controlled	through	
				terminals				
				On: The	VFD is con	trolled throu	gh remote	
				commun	ication.			
				Fault ind	icator			
		6	RIP	LED on:	in fault stat	е		
					in normal s			
				LED blin	king: in pre	-alarm state		
		Unit displaye	d currently					
		<u> </u>		Hz		Frequenc	y unit	
		-		RPM		Rotation sp	eed unit	
2	Unit indicator			A		Current unit		
		-		- %		Percent	age	
				- v		Voltage unit		
		Five-digit LE	D displays var	ious monito	ring data a	nd alarm cod	les such as	s the
		frequency se	tting and outp	out frequency	/.			
		Displa	y Means	Display	Means	Display	Means	
		0	0	1	1	2	2	
		3	3	Ч	4	5	5	
	Digital	5	6	7	7	8	8	
3	Digital display zone	9	9	<i>R</i> .	А	ь.	В	
	uispiay zone	Ε.	С	d	d	Ε.	E	
		F.	F	Н.	н	Ι.	I	
		٤.	L	п.	N	n	n	
		0	0	Ρ.	Р	r	r	
		5.	S	E	t	ĽI.	U	
		U	v	•	•	-	-	
4	Digital potentiometer	For frequence	y regulation.	For details, s	see the des	cription of P	08.41.	
5	Keys	PRG ESC	Programmi key	ng Press it t a parame		exit level-1 m	nenus or de	ete
5 Keys		DATA ENT	Confirmation key			nus in casca of a paramet	-) or

No.	Name	Description		
		\checkmark	UP Up key	Press it to increase data or move upward.
			Down key	Press it to decrease data or move downward.
			Right-shifting key	Press it to select display parameters rightward in the interface for the VFD in stopped or running state or to select digits to change during parameter setting.
			Run key	Press it to run the VFD when using the keypad for control.
		Stop RST	Stop/ Reset key	Press it to stop the VFD that is running. The function of this key is restricted by P07.05. In fault alarm state, this key can be used for reset in any control modes.
			Multifunction shortcut key	The function is determined by P07.04.

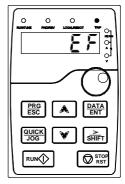
6.3 Keypad display

The VFD keypad displays information such as the stopped-state parameters, running-state parameters, and fault status, and allows you to modify function codes.


6.3.1 Displaying fault information


After detecting a fault signal, the VFD enters the fault alarm state immediately, the fault code blinks on the keypad, and the **TRIP** indicator is on. You can perform fault reset by using the **STOP/RST** key, control terminals, or communication commands.

If the fault persists, the fault code is continuously displayed.


6.3.2 Editing function codes

You can press the <u>PRG/ESC</u> key to enter the editing mode in stopped, running, or fault alarm state (if a user password is used, see the description of P07.00). The editing mode contains two levels of menus in the following sequence: Function code group or function code number \rightarrow Function code setting. You can press the <u>DATA/ENT</u> key to enter the function parameter display interface. In the function parameter display interface, you can press the <u>DATA/ENT</u> key to save parameter settings or press the <u>PRG/ESC</u> key to exit the parameter display interface. Goodrive350-19 series VFD for crane

Basic operation guidelines

Information displayed in faulty state

6.4 Operation procedure

state

You can operate the VFD by using the keypad. For details about function code descriptions, see the function code list.

Parameters displayed in running state

Figure 6-2 Status display

6.4.1 Modifying function codes

The VFD provides three levels of menus, including:

- Function code group number (level-1 menu)
- Function code number (level-2 menu)
- Function code setting (level-3 menu)

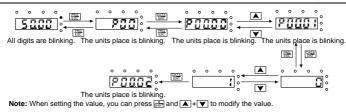
Note: When performing operations on the level-3 menu, you can press the <u>PRG/ESC</u> or <u>DATA/ENT</u> key to return to the level-2 menu. If you press the <u>DATA/ENT</u> key, the set value of the parameter is saved to the control board first, and then the level-2 menu is returned, displaying the next function code. If you press the <u>PRG/ESC</u> key, the level-2 menu is returned directly, without saving the set value of the parameter, and the current function code is displayed.

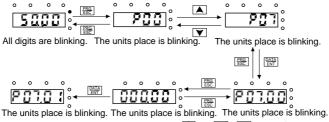
If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

• It is read only. Read-only parameters include actual detection parameters and running record parameters.

• It cannot be modified in running state and can be modified only in stopped state.

Example: Change the value of P00.01 from 0 to 1.




Figure 6-3 Modifying a parameter

6.4.2 Setting a password for the VFD

The VFD provides the user password protection function. When you set P07.00 to a non-zero value, the value is the user password. If password protection is enabled, "0.0.0.0.0" is displayed when you press the **PRG/ESC** key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

To disable the password protection function, you need only to set P07.00 to 0.

After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0" is displayed when you press the **PRG/ESC** key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

Note: When setting the value, you can press m and + ▼ to modify the value.

Figure 6-4 Setting a password

6.4.3 Viewing VFD status

The VFD provides group P17 for status viewing. You can enter group P17 for viewing.

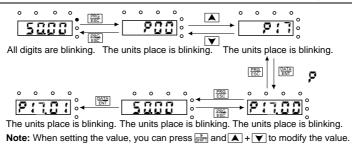
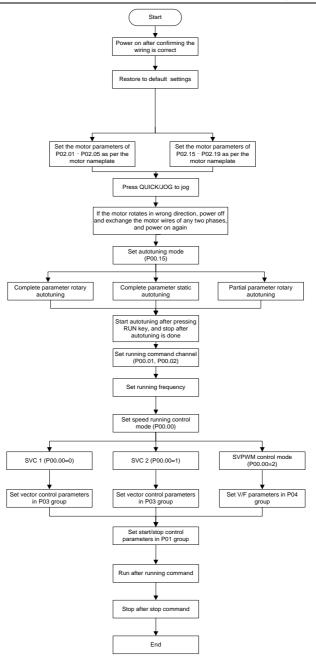


Figure 6-5 Viewing a parameter

6.5 Basic operation description

6.5.1 What this section describes

∻


This section introduces the function modules inside the VFD.

Ensure that all terminals have been securely connected. Ensure that the motor power matches the VFD power.

6.5.2 Common commissioning procedure

The common commissioning procedure is as follows (taking motor 1 as an example).

-135-

Note: If a fault occurred, find out the fault cause according to chapter 8 Troubleshooting.

The running command channel can be set through terminal commands in addition to P00.01 and P00.02.

Channel of running commands P00.01	Multifunction terminal function 36 Switch the running command channel to keypad	Multifunction terminal function 37 Switch the running command channel to terminal	Multifunction terminal function 38 Switch the running command channel to communication
Keypad	/	Terminal	Communication
Terminal	Keypad	/	Communication
Communication	Keypad	Terminal	/

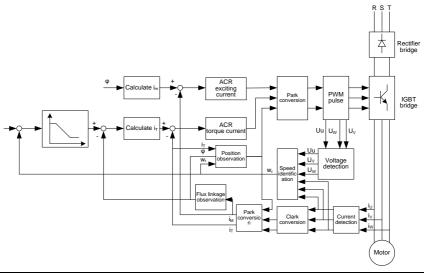
Note: "/" indicates this multifunction terminal is invalid under present reference channel.

Related parameter list:

Function code	Name	Description	Default
P00.00	Speed control mode	0: Sensorless vector control (SVC) mode 0 1: Sensorless vector control (SVC) mode 1 2: Space voltage vector control mode 3: Closed-loop vector control mode Note: Before using a vector control mode (0, 1, or 3), enable the VFD to perform motor parameter	2
P00.01	Channel of running commands	autotuning first. 0: Keypad 1: Terminal 2: Communication	0
P00.02	Communication mode of running commands	0: Modbus 1: PROFIBUS/CANopen/DeviceNet 2: Ethernet 3: EtherCAT/Profinet 4: Programmable expansion card 5: Wireless communication card 6: 216 communication card	0
P00.15	Motor parameter autotuning	0: No operation 1: Rotary autotuning. Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed.	0

Function code	Name	Description	Default
		 Static autotuning 1 (comprehensive autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load. Static autotuning 2 (partial autotuning); when the present protocol of a part of a	
		present motor is motor 1, only P02.06, P02.07 and P02.08 are autotuned; when the present motor is motor 2, only P12.06, P12.07 and P12.08 are autotuned.	
P00.18	Function parameter restore	 0: No operation 1: Restore default values 2: Clear fault records Note: After the selected operation is performed, the function code is automatically restored to 0. Restoring the default values may delete the user password. Exercise caution when using this function. 	0
P02.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
P02.01	Rated power of AM 1	0.1–3000.0kW	Model depended
P02.02	Rated frequency of AM 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.03	Rated speed of AM 1	1–36000rpm	Model depended
P02.04	Rated voltage of AM 1	0–1200V	Model depended
P02.05	Rated current of AM	0.8–6000.0A	Model depended
P02.15	Rated power of SM 1	0.1–3000.0kW	Model depended
P02.16	Rated frequency of SM 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.17	Number of pole pairs of SM 1	1–50	2
P02.18	Rated voltage of SM 1	0–1200V	Model depended
P02.19	Rated current of SM 1	0.8–6000.0A	Model depended

Function code	Name	Description	Default
P05.01–P 05.06	Function selection of multifunction digital input terminals (S1–S4, HDIA, HDIB)	36: Switch the running command channel to keypad37: Switch the running command channel to terminal38: Switch the running command channel to communication	
P07.01	Parameter copy	Range: 0–4 0: No operation 1: Upload parameters to the keypad 2: Download all parameters (including motor parameters) 3: Download non-motor parameters 4: Download motor parameters	0
P07.02	QUICK/JOG key function selection	Range: 0x00–0x27 Ones place: Function of QUICK/JOG 0: No function 1: Jog 2: Reserved 3: Switch between forward and reverse rotating 4: Clear the UP/DOWN setting 5: Coast to stop 6: Switch command channels in sequence 7: Reserved Tens place: Reserved	0x01


6.5.3 Vector control

AMs feature high order, nonlinearity, strong coupling and multi-variables, which increase difficulty to control AMs during actual application. The vector control technology solves this situation as follows: measures and controls the stator current vector of the AM, and then decomposes the stator current vector into exciting current (current component that generates internal magnet field) and torque current (current component that generates torque) based on field orientation principle, and therefore controls the amplitude values and phase positions of the two components (namely, controls the stator current vector of the AM) to realize decoupled control on exciting current and torque current, thus achieving high-performance speed regulation of the AM.

The VFD uses the sensor-less vector control algorithm, which can be used to drive AMs and permanent-magnet SMs simultaneously. As the core algorithm of vector control is based on accurate motor parameter models, the accuracy of motor parameters affects vector control performance. It is recommended to enter accurate motor parameters and autotune motor parameters before executing

vector control.

As the vector control algorithm is complicated, exercise caution before modifying vector control function parameters.

Function code	Name	Description	Default
P00.00	Speed control mode	0: Sensorless vector control (SVC) mode 0 1: Sensorless vector control (SVC) mode 1 2: Space voltage vector control mode 3: Closed-loop vector control mode Note: Before using a vector control mode (0, 1, or 3), enable the VFD to perform motor parameter autotuning first.	2
P00.15	Motor parameter autotuning	 0: No operation 1: Rotary autotuning. Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed. 2: Static autotuning 1 (comprehensive autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load. 3: Static autotuning 2 (partial autotuning); when the present motor is motor 1, only P02.06, P02.07 and 	0

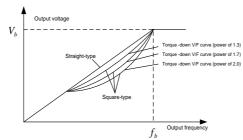
Function code	Name	Description	Default
		P02.08 are autotuned; when the present motor is motor	
		2, only P12.06, P12.07 and P12.08 are autotuned.	
P02.00	Type of motor 1	0: Asynchronous motor (AM)	0
	- ype ei meter i	1: Synchronous motor (SM)	
	Speed-loop		
P03.00	proportional	0–200.0	20.0
	gain 1		
P03.01	Speed-loop	0.000–10.000s	0.200s
	integral time 1		
D02.02	Low-point		5.00Hz
P03.02	frequency for	0.00Hz-P03.05	5.00HZ
	switching Speed-loop		
P03.03	proportional	0–200.0	20.0
1 00.00	gain 2	0-200.0	20.0
	Speed-loop		
P03.04	integral time 2	0.000–10.000s	0.200s
	High-point		
P03.05	frequency for	P03.02–P00.03 (Max. output frequency)	10.00Hz
	switching		
D02.00	Speed-loop	0–8 (0–2 ⁸ /10ms)	0
P03.06	output filter	$0-8(0-2^{-7}10\text{ms})$	0
	Electromotive		
	slip		
P03.07	compensation	50%–200.0%	100%
	coefficient of		
	vector control		
	Braking slip		
P03.08	compensation	50%-200.0%	100%
	coefficient of		
-	vector control		
Dag og	Current-loop	0.05505	1000
P03.09	proportional	0–65535	1000
	coefficient P		
D02.40	Current-loop	0.65525	1000
P03.10	integral coefficient l	0–65535	1000
	coefficient I		

Function code	Name	Description	Default
P03.11	Torque setting method	1: Keypad (P03.12) 2: Al1 (100% corresponding to triple the motor rated current) 3: Al2 4: Al3 (same as the above) 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication (100% corresponding to triple the motor rated current) 10: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 10: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 11: EtherCAT/Profinet communication 12: Programmable expansion card 13: 216 communication Note: For setting sources 2–6 and 10, 100% corresponds to three times the rated motor current.	1
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	50.0%
P03.13	Torque reference filter time	0.000–10.000s	0.010s
P03.14	Setting source of forward rotation upper-limit frequency in torque control	 0: Keypad (P03.16) 1: Al1 (100% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Al3 (same as the above) 4: Pulse frequency HDIA (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication (same as the above) 7: Profibus/CANopen/DeviceNet communication (same as the above) 8: Ethernet communication (same as the above) 9: Pulse frequency HDIB (same as the above) 9: Pulse frequency HDIB (same as the above) 10: EtherCAT/Profinet communication 11: Programmable expansion card 12: 216 communication Note: For setting methods 1–12, 100% corresponds to 	0

Function code	Name	Description	Default
		the max. frequency.	
	Setting source of reverse		
P03.15	rotation upper-limit frequency in torque control	0: Keypad (P03.17) 1–11: Same as those for P03.14	0
P03.16	Forward rotation upper-limit frequency set through keypad in torque control	Cotting range: 0.00 Hz, D00.02 (May, output fraguency)	50.00Hz
P03.17	Reverse rotation upper-limit frequency set through keypad in torque control	Setting range: 0.00 Hz–P00.03 (Max. output frequency)	50.00Hz
P03.18	Setting source of electromotive torque upper limit	0: Keypad (P03.20) 1: Al1 (100% corresponding to triple the motor rated current) 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Modbus communication 6: PROFIBUS/CANopen/DeviceNet communication 7: Ethernet communication 8: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 9: EtherCAT/Profinet communication 10: Programmable expansion card 11: 216 communication Note: For setting sources 1–4 and 8, 100% corresponds to three times the rated motor current.	0
P03.19	Setting source of braking torque upper limit	0: Keypad (P03.21) 1–10: Same as those for P03.18	0
P03.20	Electromotive	0.0–300.0% (of the motor rated current)	250.0%

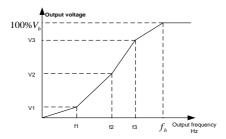
Function code	Name	Description	Default
	torque upper limit set through keypad		
P03.21	Braking torque upper limit set through keypad		250.0%
P03.22	Weakening coefficient in constant power zone	0.1–2.0	0.3
P03.23	Lowest weakening point in constant power zone	10%–100.0%	20%
P03.24	Max. voltage limit	0.0–120.0%	100.0%
P03.25	Pre-exciting time	0.000–10.000s	0.300s
P03.32	Enabling torque control	0: Disable 1: Enable	0
P03.35	Control optimization setting	Ones place: Reserved 0: Reserved 1: Reserved Tens place: Reserved 0: Reserved 1: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved 0: Reserved 1: Reserved Range: 0x0000–0x1111	0x0000
P03.36	Speed-loop differential gain	0.00–10.00s	0.00s
P03.37	High-frequency	In the closed-loop vector control mode (P00.00=3),	1000

Function code	Name	Description	Default
	current-loop	when the frequency is lower than the current-loop	
	proportional	high-frequency switching threshold (P03.39), the	
	coefficient	current-loop PI parameters are P03.09 and P03.10; and	
	High-frequency	when the frequency is higher than the current-loop	
P03.38	current-loop	high-frequency switching threshold (P03.39), the	1000
P03.38	integral	current-loop PI parameters are P03.37 and P03.38.	
	coefficient	P03.37 setting range: 0–20000	
	Current-loop	P03.38 setting range: 0–20000	
D 00.00	high-frequency	P03.39 setting range: 0.0–100.0% (of the max.	100.00/
P03.39	switching	frequency)	100.0%
	threshold		
P17.32	Flux linkage	0.0–200.0%	0.0%


6.5.4 Space voltage vector control mode

The VFD also carries built-in space voltage vector control function. The space voltage vector control mode can be used in cases where mediocre control precision is enough. In cases where a VFD needs to drive multiple motors, it is also recommended to adopt space voltage vector control mode.

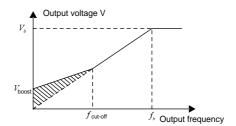
The VFD provides multiple kinds of V/F curve modes to meet different field needs. You can select corresponding V/F curve or set the V/F curve as needed.


Suggestions:

- For the load featuring constant moment, such as conveyor belt which runs in straight line, as the whole running process requires constant moment, it is recommended to adopt the straight line V/F curve.
- For the load featuring decreasing moment, such as fan and water pumps, as there is a power (square or cube) relation between its actual torque and speed, it is recommended to adopt the V/F curve corresponding to the power of 1.3, 1.7 or 2.0.

The VFD also provides multi-point V/F curves. You can change the V/F curves output by the VFD by setting the voltage and frequency of the three points in the middle. A whole curve consists of five

points starting from (0Hz, 0V) and ending at (motor fundamental frequency, motor rated voltage). During setting, follow the rule: $0 \le f1 \le f2 \le f3 \le$ Motor fundamental frequency, and, $0 \le V1 \le V2 \le V3 \le$ Motor rated voltage


The VFD provides dedicated function codes for the space voltage control mode. You can improve the space voltage control performance by means of setting.

1. Torque boost

The torque boost function can effectively compensate for the low-speed torque performance in space voltage control. Automatic torque boost has been set by default, which enables the VFD to adjust the torque boost value based on actual load conditions.

Note:

- Torque boost takes effect only at the torque boost cut-off frequency.
- If torque boost is too large, the motor may encounter low-frequency vibration or overcurrent. If such a situation occurs, reduce the torque boost value.

2. Energy-saving run

During actual running, the VFD can search for the max. efficiency point to keep running in the most efficient state to save energy.

Note:

- This function is generally used in light load or no-load cases.
- This function is no applicable to the cases where sudden load changes often occur.

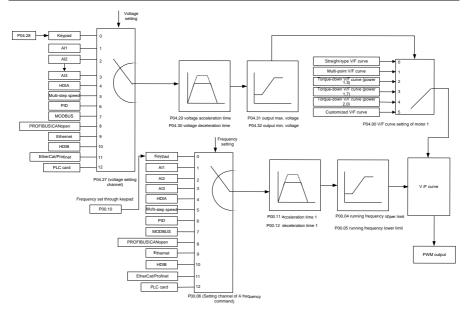
3. V/F slip compensation gain

Space voltage vector control belongs to an open-loop mode. Sudden motor load changes cause motor speed fluctuation. In cases where strict speed requirements must be met, you can set the slip compensation gain to compensate for the speed change caused by load fluctuation through VFD internal output adjustment.

The setting range of slip compensation gain is 0–200%, in which 100% corresponds to the rated slip frequency.

Note: Rated slip frequency = (Rated synchronous rotation speed of motor – Rated rotation speed of motor) x (Number of motor pole pairs)/60

4. Oscillation control


Motor oscillation often occurs in space voltage vector control in large-power driving applications. To solve this problem, the VFD provides two oscillation factor function codes. You can set the function codes based on the oscillation occurrence frequency.

Note: A greater value indicates better control effect. However, if the value is too large, the VFD output current may be too large.

5. AM I/F control

Generally, the I/F control mode is valid for AMs. It can be used for SMs only when the frequency is extremely low. Therefore, the I/F control mode described in this manual is only involved with AMs. The I/F control is implemented by performing closed-loop control on the total output current of the VFD. The output voltage adapts to the current reference, and open-loop control is separately performed over the frequency of the voltage and current.

Customized V/F curve (V/F separation) function:

When selecting the customized V/F curve function, you can specify the setting channels and acceleration/deceleration time of voltage and frequency respectively, which form a real-time V/F curve in combination manner.

Note: This type of V/F curve separation can be applied in various variable-frequency power sources. However, exercise caution when setting parameters as improper settings may cause equipment damage.

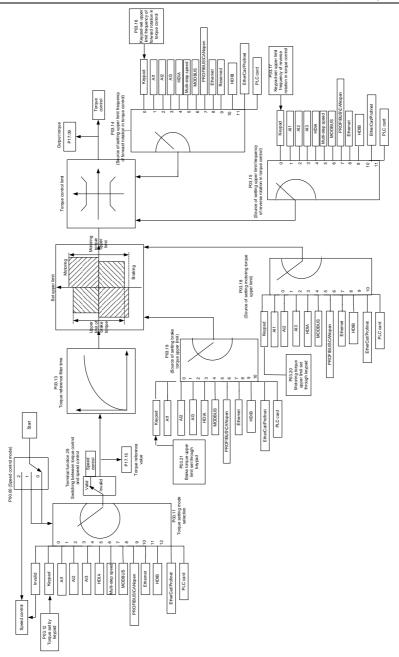
Function code	Name	Description	Default
P00.00		 Sensorless vector control (SVC) mode 0 Sensorless vector control (SVC) mode 1 Space voltage vector control mode Closed-loop vector control mode Note: Before using a vector control mode (0, 1, or enable the VFD to perform motor parameter autotuning first. 	2
P00.03	Max. output frequency	P00.04–400.00Hz	50.00Hz
P00.04	Upper limit of running frequency	P00.05–P00.03	50.00Hz
P00.05	Lower limit of running	0.00Hz–P00.04	0.00Hz

Function code	Name	Description	Default
	frequency		
P00.11	ACC time 1	0.0–3600.0s	Model depended
P00.12	DEC time 1	0.0–3600.0s	Model depended
P02.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
P02.02	Rated frequency of AM 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.04	Rated voltage of AM 1	0–1200V	Model depended
P04.00	V/F curve setting of motor 1	0: Straight-line V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F curve (V/F separation)	0
P04.01	Torque boost of motor 1	0.0%: (automatic) 0.1%–10.0%	0.0%
P04.02	Torque boost cut-off of motor 1	0.0%–50.0% (of the rated frequency of motor 1)	20.0%
P04.03	V/F frequency point 1 of motor 1	0.00Hz–P04.05	0.00Hz
P04.04	V/F voltage point 1 of motor 1	0.0%–110.0%	0.0%
P04.05	V/F frequency point 2 of motor 1	P04.03–P04.07	0.00Hz
P04.06	V/F voltage point 2 of motor 1	0.0%–110.0%	0.0%
P04.07	V/F frequency point 3 of motor 1	P04.05–P02.02 or P04.05–P02.16	0.00Hz
P04.08	V/F voltage point 3 of motor 1	0.0%–110.0%	0.0%
P04.09	V/F slip compensation gain of motor 1	0.0–200.0%	100.0%
P04.10	Low-frequency oscillation control	0–100	10

Function code	Name	Description	Default
	factor of motor 1		
	High-frequency		
P04.11	oscillation control	0–100	10
	factor of motor 1		
P04.12	Oscillation control	0.00Hz–P00.03 (Max. output frequency)	30.00Hz
104.12	threshold of motor 1		30.00112
		0: Straight-line V/F curve	
		1: Multi-point V/F curve	
P04.13	V/F curve setting of	2: Torque-down V/F curve (power of 1.3)	0
1 04.10	motor 2	3: Torque-down V/F curve (power of 1.7)	0
		4: Torque-down V/F curve (power of 2.0)	
		5: Customized V/F curve (V/F separation)	
P04.14	Torque boost of motor	0.0%: (automatic)	0.0%
1 04.14	2	0.1%–10.0%	0.070
P04.15	Torque boost cut-off	0.0%–50.0% (of the rated frequency of motor 1)	20.0%
1 04.10	of motor 2		20.070
P04.16	V/F frequency point 1	0.00Hz–P04.18	0.00Hz
1 04.10	of motor 2		0.00112
P04.17	V/F voltage point 1 of	0.0%–110.0%	0.0%
	motor 2		0.070
P04.18	V/F frequency point 2	P04.16–P04.20	0.00Hz
	of motor 2		0.000.12
P04.19	V/F voltage point 2 of	0.0%-110.0%	0.0%
101.10	motor 2		0.070
P04.20	V/F frequency point 3	P04.18–P02.02 or P04.18–P02.16	0.00Hz
	of motor 2		0.000.12
P04.21	V/F voltage point 3 of	0.0%–110.0%	0.0%
	motor 2		
P04.22	V/F slip compensation	0.0–200.0%	100.0%
	gain of motor 2		
	Low-frequency		
P04.23	oscillation control	0–100	10
	factor of motor 2		
	High-frequency		
P04.24	oscillation control	0–100	10
	factor of motor 2		
P04.25	Oscillation control	0.00Hz–P00.03 (Max. output frequency)	30.00Hz

Function code	Name	Description	Default
	threshold of motor 2		
P04.26	Energy-saving run	0: Disable 1: Automatic energy-saving run	0
P04.27	Voltage setting channel	0: Keypad; Output voltage is determined by P04.28. 1: Al1 2: Al2 3: Al3 4: HDIA 5: Multi-step running 6: PID 7: Modbus communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: HDIB 11: EtherCAT/Profinet communication 12: Programmable expansion card 13: 216 communication	0
P04.28	Voltage set through keypad	0.0%–100.0% (of the motor rated voltage)	100.0%
P04.29	Voltage increase time	0.0–3600.0s	5.0s
P04.30	Voltage decrease time	0.0–3600.0s	5.0s
P04.31	Max. output voltage	P04.32 –100.0% (of the motor rated voltage)	100.0%
P04.32	Output min. voltage	0.0%–P04.31 (motor rated voltage)	0.0%
P04.33	Weakening coefficient in constant power zone	1.00–1.30	1.00
P04.34	Pull-in current 1 in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by P04.36. Setting range: -100.0%-+100.0% (of the motor rated current)	20.0%
P04.35	Pull-in current 2 in SM V/F control	When the SM VF control mode is enabled the function code is used to set the reactive current of the motor when the output frequency is greater than	10.0%

Function code	Name	Description	Default
		the frequency specified by P04.36. Setting range: -100.0%-+100.0% (of the motor rated current)	
P04.36	Frequency threshold for pull-in current switching in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.00Hz–P00.03 (Max. output frequency)	50.00Hz
P04.37	Reactive current closed-loop proportional coefficient in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0–3000	50
P04.38	Reactive current closed-loop integral time in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control. Setting range: 0–3000	30
P04.39	Reactive current closed-loop output limit in SM VF control	When the SM VF control mode is enabled, the function code is used to set the output limit of the reactive current closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify the function code. Setting range: 0–16000	8000
P04.40	Enabling I/F mode for AM 1	0: Disable	0
P04.41	Forward current setting in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%
P04.42	Proportional coefficient in I/F mode	When I/F control is adopted for AM 1, this parameter is used to set the proportional coefficient	350


Function code	Name	Description	Default
	for AM 1	of the output current in closed-loop control.	
		Setting range: 0–5000	
		When I/F control is adopted for AM 1, this	
D04.40	Integral coefficient in	parameter is used to set the integral coefficient of	450
P04.43	I/F mode for AM 1	the output current in closed-loop control.	150
		Setting range: 0–5000	
		When I/F control is adopted for AM 1, this	
		parameter is used to set the frequency for switching	
		off the output current in closed-loop control. When	
		the frequency is lower than the value of this	
D04.44	Starting frequency for	parameter, the current closed-loop control in the I/F	
P04.44	switching off I/F mode for AM 1	control mode is enabled;	10.00Hz
	TOT AIVE T	and when the frequency is higher than that, the	
		current closed-loop control in the I/F control mode	
		is disabled.	
		Setting range: 0.00–20.00 Hz	
	Enabling I/F mode for AM 2	0: Disable	
P04.45		1: Enable	0
F04.45		Note: The I/F mode is not applicable to conical	
		motors.	
		When I/F control is adopted for AM 2, this	
	Forward current	parameter is used to set the output current. The	
P04.46	setting in I/F mode for	value is a percentage in relative to the rated current	120.0%
	AM 2	of the motor.	
		Setting range: 0.0–200.0%	
	Proportional	When I/F control is adopted for AM 2, the function	
P04.47	coefficient in I/F mode	code is used to set the proportional coefficient of	350
1 04.47	for AM 2	output current in closed-loop control. Setting range:	550
		0–5000	
		When I/F control is adopted for AM 2, the function	
P04.48	Integral coefficient in	code is used to set the integral coefficient of output	150
	I/F mode for AM 2	current in closed-loop control. Setting range:	150
		0–5000	
	Starting frequency for	When I/F control is adopted for AM 2, this	
P04.49		parameter is used to set the frequency for switching	10.00Hz
104.49	switching off I/F mode for AM 2	off the output current in closed-loop control. When	
		the frequency is lower than the value of this	

Function code	Name	Description	Default
		parameter, the current closed-loop control in the I/F control mode is enabled; and when the frequency is higher than that, the current closed-loop control in the I/F control mode is disabled.	
		Setting range: 0.00–20.00 Hz	
P04.50	End frequency for switching off I/F mode for motor 1	P04.44–P00.03	25.00Hz
P04.51	End frequency for switching off I/F mode for motor 2	P04.49–P00.03	25.00Hz
P04.52	Reverse current setting in I/F mode for AM 1	0.0–200.0%	120.0%
P04.53	Reverse current setting in I/F mode for AM 2	0.0–200.0%	120.0%

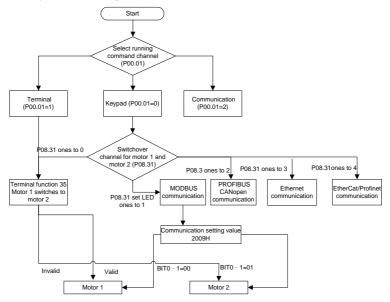
6.5.5 Torque control

The VFD supports torque control and speed control. Speed control aims to stabilize the speed to keep the set speed consistent with the actual running speed, meanwhile, the max. load-carrying capacity is restricted by the torque limit. Torque control aims to stabilize the torque to keep the set torque consistent with the actual output torque, meanwhile, the output frequency is restricted by the upper and lower limits.

Goodrive350-19 series VFD for crane

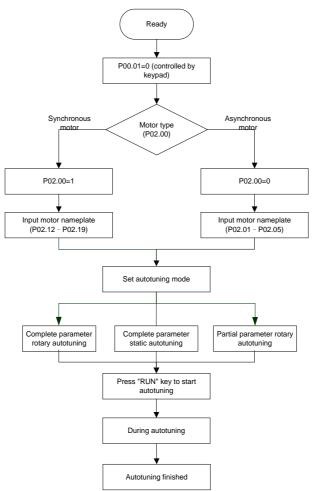
Function code	Name	Description	Default
P00.00	Speed control mode	 0: Sensorless vector control (SVC) mode 0 1: Sensorless vector control (SVC) mode 1 2: Space voltage vector control mode 3: Closed-loop vector control mode Note: Before using a vector control mode (0, 1, or 3), enable the VFD to perform motor parameter autotuning first. 	2
P03.32	Enabling torque	0: Disable	0
1 00.02	control	1: Enable	0
P03.11	Torque setting method	 0: Keypad (P03.12) 1: Keypad (P03.12) 2: Al1 (100% corresponding to triple the motor rated current) 3: Al2 4: Al3 (same as the above) 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 11: EtherCAT/Profinet communication 12: Programmable expansion card 13: 216 communication Note: For setting sources 2–6 and 10, 100% corresponds to three times the rated motor current. 	0
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	50.0%
P03.13	Torque reference filter time	0.000–10.000s	0.010s
P03.14	Setting source of forward rotation upper-limit frequency in torque control	0: Keypad (P03.16) 1: Al1 (100% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Al3 (same as the above) 4: Pulse frequency HDIA (same as the above) 5: Multi-step setting (same as the above)	0

Function code	Name	Description	Default
		6: Modbus communication (same as the above) 7: PROFIBUS/CANopen/DeviceNet communication (same as the above) 8: Ethernet communication (same as the above) 9: Pulse frequency HDIB (same as the above) 10: EtherCAT/Profinet communication 11: Programmable expansion card 12: 216 communication Note: For setting methods 1–12, 100%	
P03.15	Setting source of reverse rotation upper-limit frequency in torque control	corresponds to the max. frequency. 0: Keypad (P03.17) 1: Al1 (100% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Al3 (same as the above) 4: Pulse frequency HDIA (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication (same as the above) 6: Modbus communication (same as the above) 7: PROFIBUS/CANopen/DeviceNet communication (same as the above) 8: Ethernet communication (same as the above) 9: Pulse frequency HDIB (same as the above) 10: EtherCAT/Profinet communication 11: Programmable expansion card 12: Reserved Note: For setting methods 1–11, 100% corresponds to the max. frequency.	0
P03.16	Forward rotation upper-limit frequency set through keypad in torque control	0.00Hz–P00.03 (Max. output frequency)	50.00 Hz
P03.17	Reverse rotation upper-limit frequency set through keypad in torque control	0.00Hz–P00.03 (Max. output frequency)	50.00 Hz
P03.18	Setting source of electromotive	0: Keypad (P03.20) 1: Al1 (100% corresponding to triple the motor rated	0


Function code	Name	Description	Default
	torque upper limit	current)	
		2: AI2	
		3: AI3	
		4: Pulse frequency HDIA	
		5: Modbus communication	
		6: PROFIBUS/CANopen/DeviceNet communication	
		7: Ethernet communication	
		8: Pulse frequency HDIB (100% corresponding to	
		triple the motor rated current)	
		9: EtherCAT/Profinet communication	
		10: Programmable expansion card	
		11: 216 communication	
		Note: For setting sources 1–4 and 8, 100%	
		corresponds to three times the rated motor	
		current.	
		0: Keypad (P03.21)	
		1: Al1 (100% corresponding to triple the motor rated	
		current)	
		2: AI2	
		3: AI3	
		4: Pulse frequency HDIA	
		5: Modbus communication	
	Setting source of	6: PROFIBUS/CANopen/DeviceNet communication	
P03.19	braking torque	7: Ethernet communication	0
	upper limit	8: Pulse frequency HDIB (100% corresponding to	
		triple the motor rated current)	
		9: EtherCAT/Profinet communication	
		10: Programmable expansion card	
		11: Reserved	
		Note: For setting sources 1–4 and 8, 100%	
		corresponds to three times the rated motor	
		current.	
	Electromotive		
P03.20	torque upper limit	0.0–300.0% (of the motor rated current)	250.0%
	set through keypad		
	Braking torque		
P03.21	upper limit set	0.0–300.0% (of the motor rated current)	250.0%
	through keypad		

Function code	Name	Description	Default
P17.09	Output torque	-250.0–250.0%	0.0%
P17.15	Torque reference value	-300.0–300.0% (of the motor rated current)	0.0%

6.5.6 Motor parameters


	¢	Check the safety conditions surrounding the motor and load machineries before autotuning as physical injury may occur due to sudden start of motor during
A	~	autotuning. Although the motor does not run during static autotuning, the motor is still supplied
	\sim	with power. Do not touch the motor during autotuning; otherwise, electric shock
		may occur. Do not touch the motor before autotuning is completed.
	¢	If the motor has been connected to a load, do not carry out rotary autotuning.
•		Otherwise, the VFD may malfunction or may be damaged. If rotary autotuning is
		carried out on a motor which has been connected to a load, incorrect motor
		parameter settings and motor action exceptions may occur. Disconnect from the
		load to carry out autotuning if necessary.

The VFD can drive both AMs and SMs, and it supports two sets of motor parameters, which can be switched over by multifunction digital input terminals or communication modes.

The control performance of the VFD is based on accurate motor models. Therefore, you need to carry

out motor parameter autotuning before running a motor for the first time (taking motor 1 as an example).

Note:

- Motor parameters must be set correctly according to the motor nameplate.
- If rotary autotuning is selected during motor autotuning, disconnect the motor from the load to put the motor in static and no-load state. Otherwise, the motor parameter autotuning results may be incorrect. In addition, autotune P02.06–P02.10 for AMs and autotune P02.20–P02.23 for SMs.
- If static autotuning is selected for motor autotuning, there is no need to disconnect the motor from

the load, but the control performance may be impacted as only a part of the motor parameters have been autotuned. In addition, autotune P02.06–P02.10 for AMs and autotune P02.20–P02.22 for SMs. P02.23 can be obtained through calculation.

 Motor autotuning can be carried out on the present motor only. If you need to perform autotuning on the other motor, switch the motor through selecting the switch-over channel of motor 1 and motor 2 by setting the ones place of P08.31.

Related parameter list:

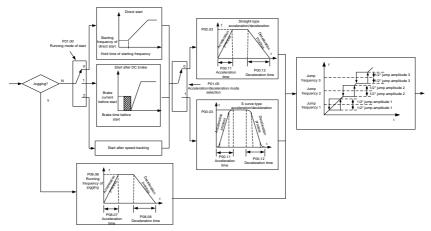
Function code	Name	Description	Default
P00.01	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0
P00.15	Motor parameter autotuning	 0: No operation 1: Rotary autotuning. Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed. 2: Static autotuning 1 (comprehensive autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load. 3: Static autotuning 2 (partial autotuning); when the present motor is motor 1, only P02.06, P02.07 and P02.08 are autotuned; when the present motor is motor 2, only P12.06, P12.07 and P12.08 are autotuned. 	0
P02.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
P02.01	Rated power of AM 1	0.1–3000.0kW	Model depended
P02.02	Rated frequency of AM 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.03	Rated speed of AM 1	1–36000rpm	Model depended
P02.04	Rated voltage of AM 1	0–1200V	Model depended
P02.05	Rated current of AM 1	0.8–6000.0A	Model depended
P02.06	Stator resistance of AM 1	0.001–65.535Ω	Model

Function code	Name	Description	Default
			depended
P02.07	Rotor resistance of AM 1	0.001 65 5250	Model
P02.07	ROIOI TESISIANCE OF AIM T	0.001-05.55512	depended
P02.08	Leakage inductance of	0.1–6553.5mH	Model
1 02.00	AM 1	0.1-0000.01111	depended
P02.09	Mutual inductance of AM	0.1–6553.5mH	Model
- 02.00	1		depended
P02.10	No-load current of AM 1	0.1–6553.5A	Model
			depended
P02.15	Rated power of SM 1	0.1–3000.0kW	Model
			depended
P02.16	Rated frequency of SM 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.17	Number of pole pairs of SM 1	1–50	2
P02.18	Detectively and CM 4	0.1000/	Model
P02.18	Rated voltage of SM 1	0–1200V	depended
P02.19	Rated current of SM 1	0.8–6000.0A	Model
102.19			depended
P02.20	Stator resistance of SM 1	0.001–65.535Ω	Model
1 02.20			depended
P02.21	Direct-axis inductance of	0.01–655.35mH	Model
	SM 1		depended
P02.22	Quadrature-axis	0.01–655.35mH	Model
	inductance of SM 1		depended
P02.23	Counter-emf constant of SM 1	0–10000	300
P05.01–P 05.06	Function selection of multifunction digital input terminals (S1–S4, HDIA, HDIB)	35: Switch from motor 1 to motor 2	
P08.31	Switching between motor 1 and motor 2	0x00–0x14 Ones place: Switchover channel 0: Terminal 1: Modbus communication 2: PROFIBUS/CANopen/DeviceNet communication 3: Ethernet communication	0x 00

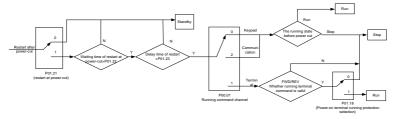
Function code	Name	Description	Default
		4: EtherCAT/Profinet communication	
		5: 216 communication	
		Tens place: indicates whether to enable	
		switchover during running	
		0: Disable	
		1: Enable	
P12.00	Type of motor 2	0: Asynchronous motor (AM)	0
P12.00	Type of motor 2	1: Synchronous motor (SM)	0
P12.01	Botod power of AM 2	0.1–3000.0kW	Model
P12.01	Rated power of AM 2	0.1-3000.0kvv	depended
P12.02	Rated frequency of AM 2	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
D10.00	Detectors and at AMA	4.00000	Model
P12.03	Rated speed of AM 2	1–36000rpm	depended
D 40.04		0.40001/	Model
P12.04	Rated voltage of AM 2	0–1200V	depended
D10.05		0.0.000.00	Model
P12.05	Rated current of AM 2	0.8–6000.0A	depended
P12.06		0.001–65.535Ω	Model
P12.00	Stator resistance of Alvi 2		depended
P12.07	Rotor resistance of AM 2	0.001–65.535Ω	Model
P12.07			depended
P12.08	Leakage inductance of AM 2	0.1–6553.5mH	Model
F 12.00			depended
P12.09	Mutual inductance of AM	0.1–6553.5mH	Model
P12.09	2		depended
P12.10	No load ourrent of AM 2	0.1–6553.5A	Model
P12.10	NO-10a0 CUITEITE OF AM 2		depended
D12 15	Rated power of SM 2	0.1. 2000 04/04	Model
P12.15	Rated power of Sivi 2	0.1–3000.0kW	depended
P12.16	Rated frequency of SM 2	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P12.17	Number of pole pairs of SM 2	1–50	2
P12.18		0–1200V	Model
	Rated voltage of SM 2		depended
D10.40	Botod ourrest of OM 0	0.8–6000.0A	Model
P12.19	Rated current of SM 2		depended

Function code	Name	Description	Default
P12.20	Stator resistance of SM	0.001–65.535Ω	Model
	2		depended
P12.21	Direct-axis inductance of	0.01–655.35mH	Model
	SM 2	0.01-055.55000	depended
P12.22	Quadrature-axis	0.01–655.35mH	Model
	inductance of SM 2	0.01-055.55000	depended
P12.23	Counter-emf constant of	0.10000	200
	SM 2	0–10000	300

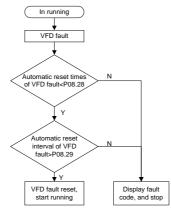
6.5.7 Start/stop control


The start/stop control of the VFD involves three states: start after a running command is given at power-on; start after power-off restart is effective; start after automatic fault reset. The three start/stop control states are described in the following.

There are three start modes for the VFD, which are start at starting frequency, start after DC braking, and start after speed tracking. You can select the proper start mode based on actual conditions.


For large-inertia load, especially in cases where reversal may occur, you can choose to start after DC braking or start after speed tracking.

Note: It is recommended to drive SMs in direct start mode.


1. Logic diagram for start after a running command is given at power-on

2. Logic diagram for start after power-off restart is effective

3. Logic diagram for start after automatic fault reset

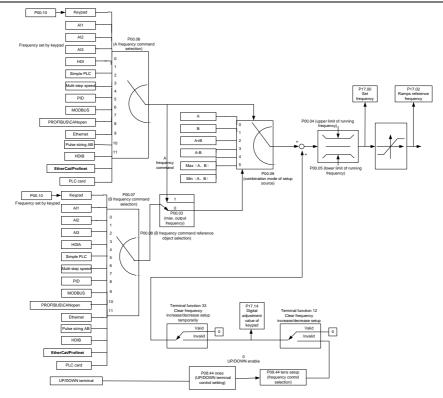
Related parameter list:

Function code	Name	Description	Default
P00.01	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0
P00.11	ACC time 1	0.0–3600.0s	Model depended
P00.12	DEC time 1	0.0–3600.0s	Model depended
P01.00	Start mode	0: Direct start 1: Start after DC braking 2: Speed tracking restart 1 3: Speed tracking restart 2	0
P01.01	Starting frequency of direct start	0.00–50.00Hz	0.50Hz
P01.02	Starting frequency hold time	0.0–50.0s	0.0s
P01.03	Braking current before start	0.0–100.0%	0.0%

Function code	Name	Description	
P01.04	DC braking time before start	0.00–50.00s	0.00s
P01.05	ACC/DEC mode	0: Linear 1: S curve Note: If mode 1 is selected, it is required to set P01.07, P01.27 and P01.08 accordingly.	0
P01.08	Stop mode	0: Decelerate to stop 1: Coast to stop	0
P01.09	Starting frequency of DC braking for stop	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P01.10	Wait time before DC braking for stop	0.00–50.00s	0.00s
P01.11	DC braking current for stop	0.0–100.0%	0.0%
P01.12	DC braking time for stop	0.00–50.00s	0.00s
P01.13	FWD/REV running deadzone time	0.0–3600.0s	
P01.14	FWD/REV running switching mode	0: Switch at zero frequency 1: Switch at the starting frequency ode 2: Switch after the speed reaches the stop speed with a delay	
P01.15	Stop speed	0.00–100.00Hz	
P01.16	Stop speed detection mode	0: Detect by the set speed (unique in space voltage vector control mode) 1: Detect by the feedback speed	1
P01.18	Terminal-based running command protection at power-on	0: The terminal running command is invalid at power-on 1: The terminal running command is valid at power-on	0
P01.19	Action selected when running frequency less than frequency lower limit (valid when frequency lower limit greater than 0)		0
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when P01.19 is 2)	0.0s
P01.21	Power-off restart selection	0: Disable 1: Enable	0
P01.22	.22 Wait time for restart after power-off 0.0–3600.0s (valid when P01.21 is 1)		1.0s

Function code	Name	Description	Default
P01.23	Start delay	0.0–60.0s	0.0s
P01.24	Stop speed delay	0.0–100.0s	0.0s
P01.25	Open-loop 0Hz output selection	0: Output without voltage 1: Output with voltage 2: Output with the DC braking current for stop	
P01.26	DEC time for emergency stop	0.0–60.0s	2.0s
P01.27	Time of starting segment of DEC S curve	0.0–50.0s	0.1s
P01.28	Time of ending segment of DEC S curve	0.0–50.0s	0.1s
P01.29	Short-circuit braking current	0.0–150.0% (of the VFD rated current)	0.0%
P01.30	Hold time of short-circuit braking for start	0.00–50.00s	0.00s
P01.31	Hold time of short-circuit braking for stop	0.00–50.00s	0.00s
P05.01–P 05.06	Digital input function selection	1: Run forward 2: Run reversely 4: Jog forward 5: Jog reversely 6: Coast to stop 7: Reset faults 8: Pause running 21: ACC/DEC time selection 1 22: ACC/DEC time selection 2 30: Disable ACC/DEC	
P08.00	ACC time 2	0.0–3600.0s	
P08.01	DEC time 2	0.0–3600.0s	Model depended
P08.02	ACC time 3	0.0–3600.0s	Model depended
P08.03	DEC time 3	0.0–3600.0s	Model depended
P08.04	ACC time 4	0.0–3600.0s	Model depended

Function code	Name	Description	Default
P08.05	DEC time 4 0.0–3600.0s		Model depended
P08.06	Running frequency of jog	0.00Hz–P00.03 (Max. output frequency)	5.00Hz
P08.07	ACC time for jogging	0.0–3600.0s	Model depended
P08.08	DEC time for jogging	0.0–3600.0s	Model depended
P08.19	19 Switching frequency of ACC/DEC time BCC/DEC time ACC/DEC time ACC/DEC time ACC/DEC time No switchover If the running frequency is greater that P08.19, switch to ACC/DEC time 2.		0
P08.21	P08.21 Reference frequency of ACC/DEC time 0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid only for straight-line ACC/DEC		0
P08.28	Auto fault reset count	0–10	0
P08.29	Auto fault reset interval	0.1–3600.0s	1.0s

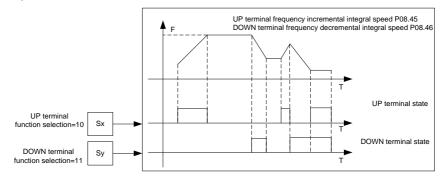

6.5.8 Frequency setting

The VFD supports multiple kinds of frequency reference modes, which can be categorized into two types: main reference channel and auxiliary reference channel.

There are two main reference channels, namely frequency reference channel A and frequency reference channel B. These two channels support simple arithmetical operation between each other, and they can be switched dynamically by setting multifunction terminals.

There is one input mode for auxiliary reference channel, namely terminal <u>UP/DOWN</u> switch input. By setting function codes, you can enable the corresponding reference mode and the impact made on the VFD frequency reference by this reference mode.

The VFD actual reference is comprised of the main reference channel and auxiliary reference channel.

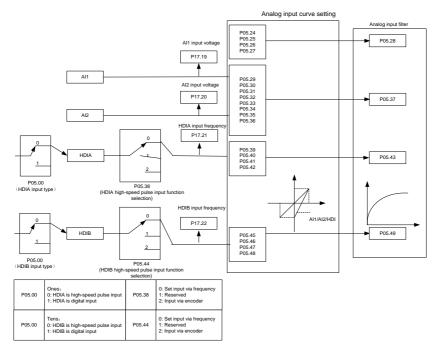


The VFD supports switchover between different reference channels, and the rules for channel switchover are shown as follows.

Present reference channel P00.09	Multifunction terminal function 13 (Switch from channel A to channel B)	Multifunction terminal function 14 (Switch from combined setting to channel A)	Multifunction terminal function 15 (Switch from combined setting to channel B)
А	В	/	/
В	А	/	/
A+B	/	А	В
A-B	/	А	В
Max(A, B)	/	А	В
Min(A, B)	/	A	В

When setting the auxiliary frequency inside the VFD through multifunction terminals UP (10) and

DOWN (11), you can increase/decrease the frequency quickly by setting P08.45 (UP terminal frequency incremental change rate) and P08.46 (DOWN terminal frequency decremental change rate).


Function code	Name	Description	Default
P00.03	Max. output frequency	P00.04–400.00Hz	50.00Hz
P00.04	Upper limit of running frequency	P00.05–P00.03 (Max. output frequency)	50.00Hz
P00.05	Lower limit of running frequency	0.00Hz–P00.04	0.00Hz
P00.06	Setting channel of A	0: Keypad	0
F00.00	frequency command	1: Al1	0
		2: AI2	
	Setting channel of B	3: AI3	
		4: High-speed pulse HDIA	
		5: Simple PLC program	
		6: Multi-step speed running	
		7: PID control	
		8: Modbus communication	
P00.07		9: Profibus/CANopen/DeviceNet	15
		communication	
		10: Ethernet communication	
		11: High-speed pulse HDIB	
		12: Pulse train AB	
		13: EtherCAT/Profinet communication	
		14: Programmable expansion card	
		15: Multi-step speed run	

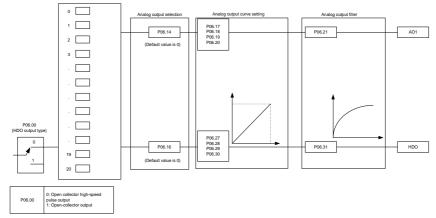
Function code	Name	Description	Default
		16: 216 communication	
P00.08	Reference object of B	0: Max. output frequency	0
1 00.00	frequency command	1: A frequency command	0
		0: A	
		1: B	
P00.09	Combination mode of setting	2: (A+B)	0
P 00.03	source	3: (A-B)	0
		4: Max(A, B)	
		5: Min(A, B)	
		10: Increase frequency setting (UP)	
		11: Decrease frequency setting (DOWN)	
	Function selection of	12: Clear the frequency increase/decrease	
P05.01–P	multifunction digital input	setting	
05.06	o 1	13: Switch between A setting and B setting	
05.00	terminals (S1–S4, HDIA, HDIB)	14: Switch between combination setting	
		and A setting	
		15: Switch between combination setting	
		and B setting	
		0x000–0x221	
		Ones place: Frequency setting selection	
		0: The setting made through UP/DOWN is	
		valid.	
		1: The setting made through UP/DOWN is	
		invalid.	
		Tens place: Frequency control selection	
	UP/DOWN terminal control	0: Valid only when P00.06=0 or P00.07=0	
P08.44		1: Valid for all frequency setting methods	0x000
	setting	2: Invalid for multi-step speed running	
		when multi-step speed running has the	
		priority	
		Hundreds place: Action selection for stop	
		0: Setting is valid.	
		1: Valid during running, cleared after stop	
		2: Valid during running, cleared after a stop	
		command is received	
D09.45	Frequency increment change		
P08.45	rate of the UP terminal	0.01–50.00Hz/s	0.50 Hz/s
P08.46	Frequency reduce rate of the	0.01–50.00Hz/s	0.50 Hz/s

Function code	Name	Description	Default
	DOWN terminal		
P17.00	Set frequency	0.00Hz-P00.03 (Max. output frequency)	0.00Hz
P17.02	Ramp reference frequency	0.00Hz-P00.03 (Max. output frequency)	0.00Hz
P17.14	Digital adjustment value	0.00Hz–P00.03 (Max. output frequency)	0.00Hz

6.5.9 Analog input

The VFD carries two analog input terminals AI1 and AI2, in which AI1 is0–10V/0–20mA and whether AI1 uses voltage input or current input can be set by P05.50, and AI2 is -10–10V, and two high-speed pulse input terminals. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference corresponds to the max. value and min. value.

Function code	Name	Description	Default
		0x00–0x11	
P05.00	HDI input type	Ones place: HDIA input type	0x00
		0: HDIA is high-speed pulse input	


Function code	Name	Description	Default
		1: HDIA is digital input	
		Tens place: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
P05.24	AI1 lower limit	0.00V-P05.26	0.00V
P05.25	Corresponding setting of AI1 lower limit	-300.0%–300.0%	0.0%
P05.26	AI1 upper limit	P05.24–10.00V	10.00V
P05.27	Corresponding setting of AI1 upper limit	-300.0%–300.0%	100.0%
P05.28	AI1 input filter time	0.000s–10.000s	0.100s
P05.29	AI2 lower limit	-10.00V–P05.31	-10.00V
P05.30	Corresponding setting of AI2 lower limit	-300.0%–300.0%	-100.0%
P05.31	Al2 middle value 1	P05.29–P05.33	0.00V
P05.32	Corresponding setting of Al2 middle value 1	-300.0%–300.0%	0.0%
P05.33	Al2 middle value 2	P05.31–P05.35	0.00V
P05.34	Corresponding setting of Al2 middle value 2	-300.0%–300.0%	0.0%
P05.35	AI2 upper limit	P05.33–10.00V	10.00V
P05.36	Corresponding setting of AI2 upper limit	-300.0%–300.0%	100.0%
P05.37	AI2 input filter time	0.000s–10.000s	0.100s
		0: Input set through frequency	
P05.38	HDIA high-speed pulse input	1: Reserved	0
P05.38	function selection	2: Input set through encoder, used	0
		together with HDIB	
P05.39	HDIA lower limit frequency	0.000 kHz–P05.41	0.000kHz
P05.40	Corresponding setting of HDIA lower limit frequency	-300.0%–300.0%	0.0%
P05.41	HDIA upper limit frequency	P05.39–50.000kHz	50.000kHz
P05.42	Corresponding setting of HDIA upper limit frequency	-300.0%–300.0%	100.0%
P05.43	HDIA frequency input filter time	0.000s–10.000s	0.030s
P05.44	HDIB high-speed pulse input	0: Input set through frequency	0

Function code	Name	Description	Default
	function selection	1: Reserved	
		2: Input set through encoder, used	
		together with HDIA	
P05.45	HDIB lower limit frequency	0.000 kHz–P05.47	0.000kHz
P05.46	Corresponding setting of HDIB lower limit frequency	-300.0%–300.0%	0.0%
P05.47	HDIB upper limit frequency	P05.45–50.000kHz	50.000kHz
P05.48	Corresponding setting of HDIB upper limit frequency	-300.0%–300.0%	100.0%
P05.49	HDIB frequency input filter time	0.000s–10.000s	0.030s
		0–1	
P05.50	AI1 input signal type	0: Voltage	0
		1: Current	

Note: When you set P90.04=1 and use the analog reference frequency, use terminals to give the forward and reverse running commands.

6.5.10 Analog output

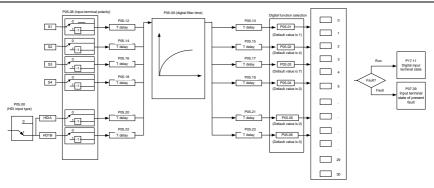
The VFD carries one analog output terminal (0–10V/0–20mA) and one high-speed pulse output terminal. Analog output signals can be filtered separately, and the proportional relation can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signal can output motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

Terminal output is described as follows:

Setting	Function	Description
0	Running frequency	0-Max. output frequency
1	Set frequency	0–Max. output frequency
2	Ramp reference frequency	0-Max. output frequency
3	Rotational speed	0-Synchronous speed corresponding
3	Rotational speed	to max. output frequency
4	Output current (relative to the VFD)	0-Twice the VFD rated current
5	Output current (relative to motor)	0-Twice the motor rated current
6	Output voltage	0-1.5 times the VFD rated voltage
7	Output power	0–Twice the rated power
8	Set torque value	0-Twice the motor rated current
9	Output torque	0-Twice the motor rated current
10	Al1 input	0–10V/0–20mA
11	AI2 input	-10V–10V
12	AI3 input	0–10V/0–20mA
13	High-speed pulse HDIA input	0.00–50.00Hz
14	Value 1 set through Modbus communication	-1000–1000, 1000 corresponding to 100.0%
15	Value 2 set through Modbus communication	-1000–1000, 1000 corresponding to 100.0%
16	Value 1 set through PROFIBUS/CANopen/DeviceNet communication	-1000–1000, 1000 corresponding to 100.0%
17	Value 2 set through PROFIBUS/CANopen/DeviceNet communication	-1000–1000, 1000 corresponding to 100.0%
18	Value 1 set through Ethernet communication	-1000–1000, 1000 corresponding to 100.0%
19	Value 2 set through Ethernet communication	-1000–1000, 1000 corresponding to 100.0%
20	High-speed pulse HDIA input	0.00–50.00Hz
21	Value 1 set through EtherCAT/PROFINET communication	-1000–1000, 1000 corresponding to 100.0%
22	Torque current (bipolar, 100% corresponding to 10V)	0-Twice the motor rated current
23	Exciting current (100% corresponding to 10V)	0-Motor rated current
24	Set frequency (bipolar)	0–Max. output frequency
25	Ramp reference frequency (bipolar)	0–Max. output frequency
26	Rotational speed (bipolar)	0-Max. output frequency

Setting	Function	Description
28	C_AO1 from the PLC	1000 corresponds to 100.0%.
29	C_AO2 from the PLC	1000 corresponds to 100.0%.
30	Rotational speed	0–Twice the motor rated synchronous rotation speed
31	Output torque	0-Twice the motor rated torque
32	Temperature measured by resistor	
33–47	Reserved	

Related parameter list:


Function code	Name	Description	Default
P06.00	HDO output type	0: Open collector high-speed pulse output 1: Open collector output	0
P06.14	AO1 output		0
P06.15	Reserved	0–47	0
P06.16	HDO high-speed pulse output		0
P06.17	AO1 output lower limit	-300.0%–P06.19	0.0%
P06.18	AO1 output corresponding to lower limit	0.00V–10.00V	0.00V
P06.19	AO1 output upper limit	P06.17–100.0%	100.0%
P06.20	AO1 output corresponding to upper limit	0.00V–10.00V	10.00V
P06.21	AO1 output filter time	0.000s–10.000s	0.000s
P06.27	HDO output lower limit	-300.0%–P06.29	0.0%
P06.28	HDO output corresponding to lower limit	0.00–50.00Hz	0.0kHz
P06.29	HDO output upper limit	P06.27–100.0%	100.0%
P06.30	HDO output corresponding to upper limit	0.00–50.00kHz	50.00kHz
P06.31	HDO output filter time	0.000s–10.000s	0.000s

6.5.11 Digital input

The VFD carries four programmable digital input terminals and two HDI input terminals. The function of all the digital input terminals can be programmed through function codes. HDI input terminal can be set to act as high-speed pulse input terminal or common digital input terminal; if it is set to act as high-speed pulse input terminal, you can also set HDIA or HDIB high-speed pulse input to serve as the frequency reference and encoder signal input.

Goodrive350-19 series VFD for crane

Basic operation guidelines

This parameter is used to set the corresponding function of digital multi-function input terminals.

Note: Two different multifunction i	nput terminals cannot be configured with a same function.
	input terminals cannot be configured with a same function.

Setting	Function	Description
0	0 No function	The VFD does not act even if there is signal input. Set
0	No function	unused terminals to "no function" to avoid misaction.
1	Run forward	External terminals are used to control the forward/reverse
2	Run reversely	running of the VFD.
3	Three wire rupping control	The terminal is used to determine the three-wire running
3	Three-wire running control	control of the VFD. For details, see description for P05.13.
4	Jog forward	For details about frequency of jogging running and
-	1	ACC/DEC time of jogging running, see the description for
5	Jog reversely	P08.06, P08.07, and P08.08.
	Coast to stop	The VFD blocks output, and the stop process of motor is
		uncontrolled by the VFD. This mode is applied in the
		scenarios with large-inertia loads and without stop time
6		requirements.
		Its definition is the same as P01.08, and it is mainly used in
		remote control.
		External fault reset function, same as the reset function of
7	Fault reset	the STOP/RST key on the keypad. You can use this
		function to reset faults remotely.
		The VFD decelerates to stop, however, all the run
0	Davias mussing	parameters are in memory state, such as PLC parameter,
8	Pause running	wobbling frequency, and PID parameter. After this signal
		disappears, the VFD will revert to the state before stop.
0		When external fault signal is transmitted to the VFD, the
9	External fault input	VFD releases fault alarm and stops.
10	Increase frequency setting	Used to change the frequency increase/decrease command

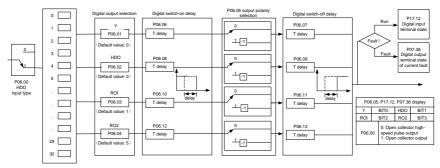
Setting	Function	Description	
	(UP)	when the frequency is given by external terminals.	
11	Decrease frequency setting (DOWN)	K1 UP terminal	
12	Clear the frequency increase/decrease setting	K2 DOWN terminal K3 UP/DOWM Zeroing terminal COM The terminal used to clear frequency-increase/decrease setting can clear the frequency value of auxiliary channel set by UP/DOWN, thus restoring the reference frequency to the frequency given by main reference frequency command channel.	
13	Switch between A setting and B setting	Used to switch between the frequency setting channels. A frequency reference channel and B frequency reference	
14	Switch between combination setting and A setting	channel can be switched by function 13; the combination channel set by P00.09 and the A frequency reference	
15	Switch between combination setting and B setting	channel can be switched by function 14; the combination channel set by P00.09 and the B frequency reference channel can be switched by function 15.	
16	Multi-step speed terminal 1	A total of 16-step speeds can be set by combining digital	
17	Multi-step speed terminal 2	states of these four terminals.	
18	Multi-step speed terminal 3	Note: Multi-step speed 1 is the low-order bit, and multi-step	
19	Multi-step speed terminal 4	speed 4 is the high-order bit. Multi-step Multi-step Multi-step speed 4 speed 3 speed 2 BIT3 BIT2 BIT1	
20	Pause multi-step speed running	The multi-step speed selection function can be screened to keep the set value in the present state.	
21	ACC/DEC time selection 1	The status of the two terminals can be combined to select	
22	four groups of ACC/DEC time. Terminal Terminal ACC/DEC time Pa 1 2 ACC/DEC time Pa	TerminalTerminalACC/DEC timeParameter12	
		ON OFF ACC/DEC time 2 P08.00/P08.01 OFF ON ACC/DEC time 3 P08.02/P08.03 ON ON ACC/DEC time 4 P08.04/P08.05	

Setting	Function	Description
		Used to clear the previous PLC state memory information
23	Simple PLC stop reset	and restart the simple PLC process.
		Used to pause the simple PLC. When the function is
24	Pause simple PLC	revoked, the simple PLC resumes the running.
		PID is ineffective temporarily, and the VFD maintains current
25	Pause PID control	frequency output.
		The VFD pauses at current output. After this function is
26	Pause wobbling frequency	canceled, it continues wobbling-frequency operation at
	(stop at current frequency)	current frequency.
07	Reset wobbling frequency	
27	(back to center frequency)	The set frequency of VFD reverts to center frequency.
28	Reset the counter	The counter is cleared.
	Switch between speed	The VFD switches from torque control mode to speed
29	control and torque control	control mode, or vice versa.
		Used to ensure the VFD is not impacted by external signals
30	Disable ACC/DEC	(except for stop command), and maintains the present
		output frequency.
31	Trigger the counter	Used to enable the counter to count pulses.
		When the terminal is closed, the frequency value set by
	Clear the frequency	UP/DOWN can be cleared to restore the reference
33	increase/decrease setting	frequency to the frequency given by frequency command
	temporarily	channel; when the terminal is opened, it restores to the
		frequency value after frequency increase/decrease setting.
34	DC braking	The VFD starts DC brake immediately after the command
34	DC blaking	becomes valid.
35	Switch between motor 1	When the function is enabled, you can realize switchover
	and motor 2	control of two motors.
	Switch the running	When the function is enabled, the running command
36	command channel to	channel is switched to keypad. When the function is
50	keypad	disabled, the running command channel is restored to the
	кеураа	previous setting.
	Switch the running	When the function is enabled, the running command
37	command channel to	channel is switched to terminal. When the function is
0,	terminal	disabled, the running command channel is restored to the
	(criminal	previous setting.
	Switch the running	When the function is enabled, the running command
38	command channel to	channel is switched to communication. When the function is
	communication	disabled, the running command channel is restored to the

Setting	Function	Description
		previous setting.
00	Des susitives servers at	When the function is enabled, motor pre-exciting is started
39	39 Pre-exciting command	until the function becomes invalid.
40	Clear power consumption	After this command becomes valid, the power consumption
40	quantity	quantity of the VFD will be zeroed out.
41	Keep power consumption	When the function is enabled, the present operation of the
41	quantity	VFD does not impact the power consumption quantity.
	Switch the setting source	The torque upper limit is set through the keypad when the
42	of braking torque upper	command is valid.
	limit to keypad	
43	Position reference point	Only valid for S1, S2, and S3
	input	Osia dia ara-itiania alia dia dala
44	Disable spindle orientation	Spindle positioning is disabled.
45	Spindle zeroing / Local	Trigger the spindle positioning function
	positioning zeroing Spindle zeroing position	
46	selection 1	Spindle zeroing position 1 selected through terminal
	Spindle zeroing position	
47	selection 2	Spindle zeroing position 2 selected through terminal
	Spindle scale division	
48	selection 1	Spindle scale division value 1 selected through terminal
40	Spindle scale division	Saindle apple division value 2 selected through terminal
49	selection 2	Spindle scale division value 2 selected through terminal
50	Spindle scale division	Spindle scale division value 3 selected through terminal
50	selection 3	
	Terminal for switching	
51	between position control	Switch between position control and speed control
	and speed control	
52	Disable pulse input	When the terminal is active, the pulse input is invalid
53	Clear position deviation	Clear the input deviation of the position loop
54	Switch position	Switch the position proportional gains
	proportional gains	
55	Enable cyclic digital	Enabling cyclic positioning function in digital position
	positioning	positioning mode
	_	When the function is enabled, the motor decelerates to stop
56	Emergency stop	in emergency manner according to the time specified by
	•• •	P01.25.
57	Motor overtemperature	When there is motor overtemperature fault input, the motor

Setting	Function	Description
	fault input	stops due to the fault.
50	Switch from VC to space	When the function is enabled in stopped state, space
59	voltage vector control	voltage vector control is used.
60	Switch to VC control	When the function is enabled in stopped state, VC is used.
61	Switch PID polarities	Used to switch the output polarity of PID. It is used together with P09.03.
62	Switch to SVC1 control (open-loop vector control 1)	Switch from closed-loop vector control to open-loop vector control.
63	Enable servo	When the thousands place of P21.00 enables servo, the servo enabling terminal is valid, which controls the VFD to enter zero servo control. At this time, the start command is not needed.
64	Limit on forward running	Forward rotation position limit for stop. When receiving this signal during forward rotation, the VFD stops.
65	Limit on reverse running	Reverse rotation position limit for stop. When receiving this signal during reverse rotation, the VFD stops.
66	Clear encoder counting	Used to clear the position counting value.
67	Increase pulses	When the terminal function is valid, the pulse input is increased according to the P21.27 pulse speed.
68	Enable pulse superposition	Pulse increment and pulse decrement can be valid only after pulse superimposition is enabled.
69	Decrease pulses	When the terminal function is valid, the pulse input is decreased according to the P21.27 pulse speed.
70	Electronic gear selection	When the terminal is valid, the proportional numerator is switched to the P21.30 numerator of the 2nd command ratio.
71	Switch to the master	When the terminal is valid, the switchover from the slave to the master can be implemented.
72	Switch to the slave	When the terminal is valid, the switchover from the master to the slave can be implemented.
73	Enable the VFD	When the terminal is valid, the VFD is enabled.
74	Contactor feedback signal	Contactor status feedback.
75	Brake feedback signal	Brake status feedback.
76	Operating lever zero-point position	When the terminal is valid, the operating level sets the zero-point input signal.
77	Graded reference terminal	Five terminals can be used to implement graded speed setting.

Setting	Function				Descr	iption			
=0	Graded reference terminal		Terminal	Terminal	Terminal	Terminal	Terminal	Speed	
78	2		1	2	3	4	5	setting	
	Graded reference terminal	1	OFF	OFF	OFF	OFF	OFF	Graded	
79	3		-	-	-	-	-	setting 0	
	Graded reference terminal		ON	OFF	OFF	OFF	OFF	Graded setting 1	
80	4							Graded	
			ON	ON	OFF	OFF	OFF	setting 2	
			ON	ON	ON	OFF	OFF	Graded	
	Graded reference terminal					011	011	setting 3	
81	5		ON	ON	ON	ON	OFF	Graded setting 4	
								Graded	
			ON	ON	ON	ON	ON	setting 5	
		Whe	n the ter	minal is v	valid, the	VFD en	ters the	upward s	slow
82	Upward DEC limit position	speed area and runs at the frequency specified by P91		by P91.	.35.				
			n the ter	minal is v	valid, the	VFD en	ters the o	downwa	rd
83	Downward DEC limit	slow speed area and runs at the frequency specified by							
	position	P91.35.							
84	Light load speed boost	Whe	n P91.08	8=5, the 1	terminal	comman	d is valid	l, light lo	ad
04	signal	speed boost is performed.							
05	Brake detection	Whe	n the ter	minal co	mmand i	s valid, b	rake det	ection is	;
85	Brake detection	perfo	ormed.						
	Valid signal of PTC	Supp	oorting o	nly the te	erminalS8	3 of EC-I	O502-00). When	
86	Ũ	rece	iving this	signal, t	he PTC o	overtemp	erature	alarm or	fault
	overtemperature	is re	ported.						
87	Position synchronization	The	position	synchror	nization p	ulse cou	inter stat	us is	
07	pulse counting reset	clear	red.						
88	Switchover between	Whe	n the fur	iction is e	enabled,	you can	realize s	witchove	er
00	motors 1 and 3	cont	rol of two	motors.					
		Whe	n the ter	minal cor	mmand is	s valid, th	ne VFD s	tops with	n the
89	Anti-snag protection input	torque specified by P92.27 within the time specified by							
		P92.	28.						
00	Epobling opti ourse	Whe	n the ter	minal co	mmand i	s valid, tl	ne anti-s	way fund	ction
90	Enabling anti-sway	is en	abled.						


Function code	Name	Description	Default
P05.00	HDI input type	0x00–0x11 Ones place: HDIA input type	0x00

Function code	Name	Description	Default
		0: HDIA is high-speed pulse input	
		1: HDIA is digital input	
		Tens place: HDIB input type	
		0: HDIB is high-speed pulse input	
P05.01	Function of S1	1: HDIB is digital input	1
P05.02	Function of S2	-	2
P05.03	Function of S3	-	7
		-	
P05.04	Function of S4	0–90	0
P05.05	Function of HDIA	-	0
P05.06	Function of HDIB	-	0
P05.07	Reserved		0
P05.08	Input terminal polarity	0x00–0x3F	0x00
P05.09	Digital input filter time	0.000–1.000s	0.010s
		0x00–0x3F (0: Disable. 1: Enable)	
		BIT0: S1 virtual terminal	
	Virtual terminal setting	BIT1: S2 virtual terminal	0x00
P05.10		BIT2: S3 virtual terminal	
		BIT3: S4 virtual terminal BIT4: HDIA virtual terminal	
		BIT5: HDIB virtual terminal	
		0: Two-wire control mode 1	
D 05.44		1: Two-wire control mode 2	
P05.11	Terminal control mode	2: Three-wire control mode 1	0
		3: Three-wire control mode 2	
P05.12	S1 switch-on delay	0.000–50.000s	0.000s
P05.13	S1 switch-off delay	0.000–50.000s	0.000s
P05.14	S2 switch-on delay	0.000–50.000s	0.000s
P05.15	S2 switch-off delay	0.000–50.000s	0.000s
P05.16	S3 switch-on delay	0.000–50.000s	0.000s
P05.17	S3 switch-off delay	0.000–50.000s	0.000s
P05.18	S4 switch-on delay	0.000–50.000s	0.000s
P05.19	S4 switch-off delay	0.000–50.000s	0.000s
P05.20	HDIA switch-on delay	0.000–50.000s	0.000s

Function code	Name	Description	Default
P05.21	HDIA switch-off delay	0.000–50.000s	0.000s
P05.22	HDIB switch-on delay	0.000–50.000s	0.000s
P05.23	HDIB switch-off delay	0.000–50.000s	0.000s
P07.39	Input terminal status at present fault		0
P17.12	Digital input terminal status		0

6.5.12 Digital output

The VFD carries two groups of relay output terminals, one open collector Y output terminal and one high-speed pulse output (HDO) terminal. The function of all the digital output terminals can be programmed through function codes, of which the high-speed pulse output terminal HDO can also be set to high-speed pulse output or digital output by function code.

The following table lists the function code options. A same output terminal function can be repeatedly selected.

Setting	Function	Description
0	Invalid	The output terminal does not have any function.
1	Running	The ON signal is output when there is frequency output during running.
2	Running forward	The ON signal is output when there is frequency output during forward running.
3	Running reversely	The ON signal is output when there is frequency output during reverse running.
4	Jogging	The ON signal is output when there is frequency output during jogging.
5	VFD in fault	The ON signal is output when VFD fault occurred.
6	Frequency level detection FDT1	(Refer to the descriptions for P08.32–P08.33.)

Setting	Function	Description
7	Frequency level detection FDT2	(Refer to the descriptions for P08.34–P08.35.)
8	Frequency reached	(Refer to the description for P08.36.)
0		The ON signal is output when the VFD output
9	Running in zero speed	frequency and reference frequency are both zero.
10	Upper limit frequency reached	The ON signal is output when the running frequency
10	Opper limit frequency reached	reaches upper limit frequency.
11	Lower limit frequency reached	The ON signal is output when the running frequency
		reached lower limit frequency.
		Main circuit and control circuit powers are
12	Ready for running	established, the protection functions do not act;
		when the VFD is ready to run, output ON signal.
13	Pre-exciting	The ON signal is output during pre-exciting of the
	g	VFD.
		The ON signal is output when the pre-alarm time
14	Overload pre-alarm	elapsed based on the pre-alarm threshold; see
		P11.08–P11.10 for details.
		The ON signal is output when the pre-alarm time
15	Underload pre-alarm	elapsed based on the pre-alarm threshold. For
		details, see the descriptions for P11.11–P11.12.
16	Simple PLC stage completed	When the present state of the simple PLC is
		completed, it outputs a signal.
17	Simple PLC cycle completed	When a single cycle of the simple PLC is completed,
		it outputs a signal.
18	Set counting value reached	The ON signal is output when the set counting value is reached.
	Designated counting value	The ON signal is output when the designated
19	reached	counting value is reached.
		The ON signal is output when an external fault is
20	External fault is valid	valid.
		The ON signal is output when the running time is
22	Running time reached	reached.
		A signal is output based on the value set through
	Modbus communication	Modbus communication. When the value is 1, the
23	virtual terminal output	ON signal is output; when the value is 0, the OFF
		signal is output.
	PROFIBUS/CANopen/DeviceNet	A signal is output based on the value set through
24	communication virtual terminal	PROFIBUS/CANopen/DeviceNet communication.
	output	When the value is 1, the ON signal is output; when

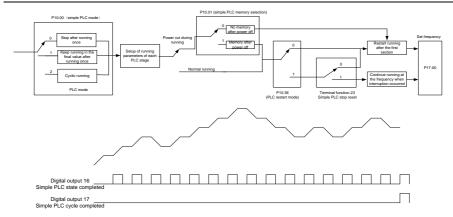
Setting	Function	Description
		the value is 0, the OFF signal is output.
		A signal is output based on the value set through
25	Ethernet communication virtual	Ethernet communication. When the value is 1, the
25	terminal output	ON signal is output; when the value is 0, the OFF
		signal is output.
26	DC bus voltage established	When the bus voltage is above the inverter
20	De bus voltage cotablished	undervoltage, the output is valid.
27	Z pulse output	When the encoder Z pulse is reached, the output is
		valid, which becomes invalid 10 seconds later.
28	Superposing pulses	When the pulse superposition terminal input
		function is valid, the output is valid.
29	STO action	When an STO fault occurs, the output is valid.
30	Positioning completed	When positioning is completed, the output is valid.
31	Spindle zeroing completed	When spindle zeroing is completed, the output is valid.
32	Spindle scale division completed	When spindle scale division is completed, the output
		is valid.
33	In speed limit	When the frequency is limited, the output is valid.
	EtherCAT/PROFINET	A signal is output based on the value set through
34	communication virtual terminal	EtherCAT/PROFINET communication. When the
	output	value is 1, the ON signal is output; when the value is
35	Reserved	0, the OFF signal is output.
- 35	Speed/position control switchover	When the mode switchover is completed, the output
36	completed	is valid.
	completed	The ON signal is output when any running
37	Any frequency reached	frequency is reached.
38–40	Reserved	
41	C_Y1	C_Y1 from PLC (Set P27.00 to 1.)
42	C Y2	C_Y2 from PLC (Set P27.00 to 1.)
43	C_HDO	C_HDO from PLC (Set P27.00 to 1.)
44	C_R01	C_RO1 from PLC (Set P27.00 to 1.)
45	C_RO2	C_RO2 from PLC (Set P27.00 to 1.)
46	C_RO3	C_RO3 from PLC (Set P27.00 to 1.)
47	 C_RO4	C_RO4 from PLC (Set P27.00 to 1.)
		The contactor is VFD controlled. It outputs the ON
48	Contactor output	signal during running and it outputs the OFF signal
		during stop.

Setting	Function	Description
49	Droke eutruit	It outputs the ON signal during brake release and it
49	Brake output	outputs the OFF signal during brake closing.
		If the torque verification succeeds, and the running
		frequency is no less than the brake release
50	Ready to release the brake	frequency, it outputs the ON signal when it is ready
		to release the brake. Otherwise, it outputs the OFF
		signal.
		If the stop command is given, and the running
		frequency is no greater than the brake closing
51	Ready to close the brake	frequency, it outputs the ON signal when it is ready
		to close the brake. Otherwise, it outputs the OFF
		signal.
52	Upward limit position reached	The output is valid when the upward limit position is
02		reached.
53	Downward limit position reached	The output is valid when the downward limit position
00	Downward Innit position redoried	is reached.
54	Low voltage protection	The output is valid at low voltage.
55	Overload protection	The output is valid at overload.
	Brake detection reminding	When the brake detection reminding time is
56		reached, it outputs the ON signal. Otherwise, it
		outputs the OFF signal.
57	Brake failure alarm	The output is valid when the brake fails.
58	Input phase loss alarm	The output is valid when an input phase loss alarm
		is reported.
59	Loose rope status	The output is valid when a FWD loose rope
		protection or REV loose rope alarm or fault occurs.
60	In motor 1 state	The output is valid when motor 1 is selected.
61	In motor 2 state	The output is valid when motor 2 is selected.
62	In motor 3 state	The output is valid when motor 3 is selected.
63	PT100 temperature alarm	The output is valid when a PT100 temperature
		alarm is reported.
64	PT1000 temperature alarm	The output is valid when a PT1000 temperature
		alarm is reported.
65	Boosting the speed with light load	It outputs the ON signal when the speed is boosted
		with light load.
66	Frequency decrease with voltage	It outputs the ON signal when the frequency
	requertey decrease with voltage	decreases with voltage.
67	Weighing alarm	It outputs the ON signal when the weight reaches

Setting	Function	Description
		the alarm value.
69	8 AI detected temperature alarm	It outputs the ON signal when the AI detected
68		temperature reaches the alarm value.

Related parameter list:

Function code	Name	Description	Default
P06.00	HDO output type	0: Open collector high-speed pulse output 1: Open collector output	0
P06.01	Y1 output		0
P06.02	HDO output	0–68	0
P06.03	RO1 output	0-68	1
P06.04	RO2 output		5
P06.05	Output terminal polarity selection	0x00–0x0F	0x00
P06.06	Y switch-on delay	0.000–50.000s	0.000s
P06.07	Y switch-off delay	0.000–50.000s	0.000s
P06.08	HDO switch-on delay	0.000–50.000s (valid when P06.00 is 1)	0.000s
P06.09	HDO switch-off delay	0.000–50.000s (valid when P06.00 is 1)	0.000s
P06.10	RO1 switch-on delay	0.000–50.000s	0.000s
P06.11	RO1 switch-off delay	0.000–50.000s	0.000s
P06.12	RO2 switch-on delay	0.000–50.000s	0.000s
P06.13	RO2 switch-off delay	0.000–50.000s	0.000s
P07.40	Output terminal status at present fault		0
P17.13	Digital output terminal status		0


6.5.13 Simple PLC

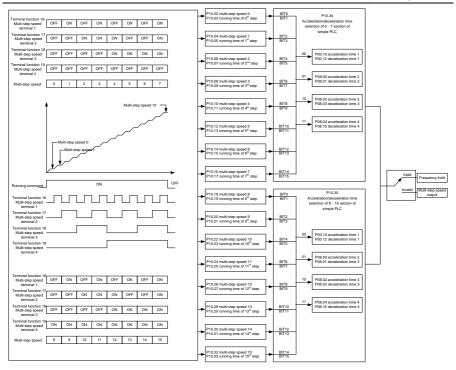
Simple PLC is a multi-step speed generator, and the VFD can change the running frequency and direction automatically based on the running time to fulfill process requirements. Previously, such function was realized with external PLC, while now, the VFD itself can achieve this function.

The VFD can realize 16-step speeds control, and provide four groups of acceleration/deceleration time for choose.

After the set PLC completes one cycle (or one step), one ON signal can be output by the multifunction relay.

Goodrive350-19 series VFD for crane

Function code	Name	Description	Default
P05.01– P05.06	Digital input function selection	23: Simple PLC stop reset 24: Pause simple PLC 25: Pause PID control	
P06.01-	Digital output function	16: Simple PLC stage reached	
P06.04	selection	17: Simple PLC cycle reached 0: Stop after running once	
P10.00	Simple PLC mode	1: Keep running with the final value after running once 2: Cyclic running	0
P10.01	Simple PLC memory selection	0: No power-failure memory 1: With power-failure memory	0
P10.02	Multi-step speed 0	-100.0–100.0%	0.0%
P10.03	Running time of step 0	0.0–6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-100.0–100.0%	0.0%
P10.05	Running time of step 1	0.0–6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-100.0–100.0%	0.0%
P10.07	Running time of step 2	0.0–6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-100.0–100.0%	0.0%
P10.09	Running time of step 3	0.0–6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-100.0–100.0%	0.0%
P10.11	Running time of step 4	0.0–6553.5s (min)	0.0s


Function code	Name	Description	Default
P10.12	Multi-step speed 5	-100.0–100.0%	0.0%
P10.13	Running time of step 5	0.0–6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-100.0–100.0%	0.0%
P10.15	Running time of step 6	0.0–6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-100.0–100.0%	0.0%
P10.17	Running time of step 7	0.0–6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-100.0–100.0%	0.0%
P10.19	Running time of step 8	0.0–6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-100.0–100.0%	0.0%
P10.21	Running time of step 9	0.0–6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-100.0–100.0%	0.0%
P10.23	Running time of step 10	0.0–6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-100.0–100.0%	0.0%
P10.25	Running time of step 11	0.0–6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-100.0–100.0%	0.0%
P10.27	Running time of step 12	0.0–6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-100.0–100.0%	0.0%
P10.29	Running time of step 13	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-100.0–100.0%	0.0%
P10.31	Running time of step 14	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-100.0–100.0%	0.0%
P10.33	Running time of step 15	0.0–6553.5s (min)	0.0s
P10.34	ACC/DEC time of steps 0–7 of simple PLC	0x0000–0XFFFF	0000
P10.35	ACC/DEC time of steps 8–15 of simple PLC	0x0000-0XFFFF	0000
P10.36	PLC restart mode	0: Restart from step 1 1: Resume from the paused step	0
P17.00	Set frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.27	Simple PLC and actual step of multi-step speed	0–15	0

6.5.14 Multi-step speed running

Set the parameters used in multi-step speed running. The VFD can set 16-step speeds, which are selectable by multi-step speed terminals 1–4, corresponding to multi-step speed 0 to multi-step speed 15.

Goodrive350-19 series VFD for crane

Basic operation guidelines

Function code	Name	Description	Default
		16: Multi-step speed terminal 1	
		17: Multi-step speed terminal 2	
P05.01-P05.06	Digital input function	18: Multi-step speed terminal 3	
1 00.01-1 00.00	selection	19: Multi-step speed terminal 4	
		20: Pause multi-step speed	
		running	
P10.02	Multi-step speed 0	-100.0–100.0%	0.0%
P10.03	Running time of step 0	0.0–6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-100.0–100.0%	0.0%
P10.05	Running time of step 1	0.0–6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-100.0–100.0%	0.0%
P10.07	Running time of step 2	0.0–6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-100.0–100.0%	0.0%

Function code	Name	Description	Default
P10.09	Running time of step 3	0.0–6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-100.0–100.0%	0.0%
P10.11	Running time of step 4	0.0–6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-100.0–100.0%	0.0%
P10.13	Running time of step 5	0.0–6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-100.0–100.0%	0.0%
P10.15	Running time of step 6	0.0–6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-100.0–100.0%	0.0%
P10.17	Running time of step 7	0.0–6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-100.0–100.0%	0.0%
P10.19	Running time of step 8	0.0–6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-100.0–100.0%	0.0%
P10.21	Running time of step 9	0.0–6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-100.0–100.0%	0.0%
P10.23	Running time of step 10	0.0–6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-100.0–100.0%	0.0%
P10.25	Running time of step 11	0.0–6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-100.0–100.0%	0.0%
P10.27	Running time of step 12	0.0–6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-100.0–100.0%	0.0%
P10.29	Running time of step 13	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-100.0–100.0%	0.0%
P10.31	Running time of step 14	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-100.0–100.0%	0.0%
P10.33	Running time of step 15	0.0–6553.5s (min)	0.0s
P10.34	ACC/DEC time of steps 0–7 of simple PLC	0x0000-0XFFFF	0000
P10.35	ACC/DEC time of steps 8–15 of simple PLC	0x0000-0XFFFF	0000
P17.27	Simple PLC and actual step of multi-step speed	0–15	0

6.5.15 Graded multi-step speed reference

Graded reference is a speed reference method for hoisting applications. Graded reference supports

the graded operating lever mode and graded remote-control mode. Graded reference can implement 6-step speeds by combing the five graded multi-step reference terminals. The combination methods are as follows:

Graded reference terminal 1	Graded reference terminal 2	Graded reference terminal 3	Graded reference terminal 4	Graded reference terminal 5	Speed setting	Function code
OFF	OFF	OFF	OFF	OFF	Graded multi-step speed reference 0	P90.06
NO	OFF	OFF	OFF	OFF	Graded multi-step speed reference 1	P90.07
NO	NO	OFF	OFF	OFF	Graded multi-step speed reference 2	P90.08
NO	NO	NO	OFF	OFF	Graded multi-step speed reference 3	P90.09
NO	NO	NO	NO	OFF	Graded multi-step speed reference 4	P90.10
NO	NO	NO	NO	NO	Graded multi-step speed reference 5	P90.11

Related parameter list:

Function code	Name	Description	Default
		77: Graded reference terminal 1	
P05.01-P05.06	Digital input function	78: Graded reference terminal 2	
I/O expansion card	selection	79: Graded reference terminal 3	
P25.01-P25.08	Selection	80: Graded reference terminal 4	
		81: Graded reference terminal 5	
P90.06	Graded multi-step speed	-100.0–100.0%, relative to P00.03	0.0%
F 90.00	reference 0	- 100.0– 100.0 %, Telative to F 00.03	0.0%
P90.07	Graded multi-step speed	-100.0–100.0%, relative to P00.03	0.0%
F 90.07	reference 1	- 100.0– 100.0 %, Telative to F 00.03	
P90.08	Graded multi-step speed	-100.0–100.0%, relative to P00.03	0.0%
F 90.06	reference 2	- 100.0– 100.0 %, Telative to F 00.03	0.0%
P90.09	Graded multi-step speed	-100.0–100.0%, relative to P00.03	0.0%
F 90.09	reference 3	- 100.0– 100.0 %, Telative to F 00.03	0.0%
P90.10	Graded multi-step speed	100.0.100.0% relative to B00.03	0.0%
F 90.10	reference 4	-100.0–100.0%, relative to P00.03	0.0%
P90.11	Graded multi-step speed	-100.0–100.0%, relative to P00.03	0.0%
F 90.11	reference 5	-100.0-100.0%, relative to P00.03	0.0%

Note: The multi-step settings of a higher grade can be closed only after the multi-step settings of all lower grades are closed.

6.5.16 Local encoder input

The VFD supports pulse count function by inputting the count pulse from the HDI high-speed pulse port. When the actual count value is no less than the set value, the digital output terminal outputs the

count-value-reached pulse signal, and the corresponding count value is cleared automatically.

Function code	Name	Description	Default
		0x00–0x11	
		Ones place: HDIA input type	
		0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is digital input	0x00
		Tens place: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
		0: Input set through frequency	
P05.38	HDIA high-speed pulse input	1: Reserved	0
F05.56	function selection	2: Input set through encoder, used together	0
		with HDIB	
		0: Input set through frequency	
P05.44	HDIB high-speed pulse input	1: Reserved	0
F03.44	function selection	2: Input set through encoder, used together	0
		with HDIA	
P18.00	Actual frequency of encoder	-999.9–3276.7Hz	0.0Hz
		0: PG card	
P20.15	Speed measurement mode	1: Locally measured through HDIA and	0
F20.15		HDIB. Only the 24V incremental encoders	
		are supported.	

6.5.17 Commissioning procedures for position control and spindle positioning

1. Commissioning procedure for closed-loop vector control on AMs

- (1) Restore to default values through the keypad.
- (2) Set P00.03, P00.04 and motor nameplate parameters in group P02.
- (3) Perform motor parameter autotuning.

Perform rotary parameter autotuning or static parameter autotuning through the keypad. If the motor can be disconnected from load, you can perform rotary parameter autotuning; otherwise, perform static parameter autotuning. The parameters obtained from autotuning are automatically saved to motor parameters in group P02.

- (4) Verify whether the encoder is installed and set properly.
- a) Determine the encoder direction and parameter settings.

Set P20.01 (encoder pulse-per-revolution), set P00.00=2 and P00.10=20Hz, and run the VFD, at this point, the motor rotates at 20Hz, observe whether the speed measurement value of P18.00 is correct, if the value is negative, it indicates the encoder direction is reversed, under such situation, set P20.02

to 1; if the speed measurement value deviates greatly, it indicates P20.01 is set improperly. Check whether P18.02 (encoder Z pulse count value) fluctuates. If yes, it indicates the encoder suffers interference or P20.01 is set improperly. Then check the wiring and the shield layer.

b) Determine the Z pulse direction.

Set P00.10=20Hz, and set P00.13 (running direction) to forward and reverse in turn to check whether the difference in P18.02 is less than 5. If the difference remains greater than 5 after reversing the Z pulse direction through P20.02, power off and swap phase A and phase B of the encoder. Then check the difference in P18.02 between forward rotation and reverse rotation. The Z pulse direction only affects the forward/reverse positioning precision of the spindle positioning carried out with Z pulses.

(5) Perform closed-loop vector pilot-run.

Set P00.00=3, and perform closed-loop vector control, and adjust P00.10 and speed loop and current loop PI parameters in group P03 to implement stable run in the entire range.

(6) Perform flux-weakening control.

Set the flux-weakening regulator gain P03.26 to a value ranging from 0 to 8000, and check the flux-weakening control effect. You can adjust P03.22–P03.24 as needed.

2. Commissioning procedure for closed-loop vector control on SMs

(1) Set P00.18=1 to restore to default settings.

(2) Set P00.00=3 (closed-loop vector control), set P00.03, P00.04, and motor nameplate parameters in group P02.

(3) Set the encoder parameters P20.00 and P20.01.

When the encoder is a resolver-type encoder, set the encoder pulse count value to (resolver pole pair count x 1024). For example, if the pole pair count is 4, set P20.01 to 4096.

(4) Verify whether the encoder is installed and set properly.

When the motor stops, check whether P18.21 (resolver angle) fluctuates. If it fluctuates sharply, check the wiring and grounding. Rotate the motor slowly, and check whether P18.21 changes accordingly. If yes, it indicates that the motor is connected correctly; if the value of P18.02 remains unchanged as a non-zero value after multiple turns of rotation, it indicates that the encoder Z signal is correct.

(5) Autotune the initial position of magnetic pole.

Set P20.11 to 2 (static autotuning) or 3 (rotary autotuning), and press the RUN key to run the VFD.

a) Rotary autotuning (P20.11=3)

Detect the present magnetic pole position when autotuning starts, and then accelerate to 10Hz to autotune the magnetic pole position of encoder Z pulses, and then decelerate to stop.

During running, if the ENC1O or ENC1D fault occurs, set P20.02=1 and carry out autotuning again.

After autotuning is completed, the angle obtained from autotuning is saved to P20.09 and P20.10 automatically.

b) Static autotuning

In the scenarios where the load can be disconnected, you are recommended to adopt rotary autotuning (P20.11=3) for high angle precision. If the load cannot be disconnected, you can adopt static autotuning (P20.11=2). The magnetic pole position obtained from autotuning is saved to P20.09 and P20.10 automatically.

(6) Perform closed-loop vector pilot-run.

Adjust P00.10 and speed loop and current loop PI parameters in group P03 to implement stable run in the entire range. If oscillation occurs, reduce the value of P03.00, P03.03, P03.09 and P03.10. If current oscillation noise occurs during low speed running, adjust P20.05.

Note: You must re-determine P20.02 (encoder direction) and perform magnetic pole position autotuning again if the motor or encoder wires are swapped.

3. Commissioning procedure for pulse string control

Pulse input is operated based on closed-loop vector control; speed detection is needed in the subsequent spindle positioning, zeroing operation and division operation.

(1) Restore to default values through the keypad.

(2) Set P00.03, P00.04 and motor nameplate parameters in group P02.

(3) Motor parameter autotuning: rotary parameter autotuning or static parameter autotuning.

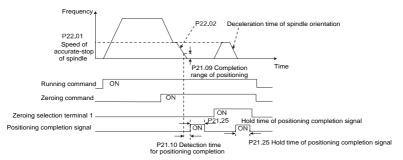
(4) Verify whether the encoder is installed and set properly. Set P00.00=3 and P00.10=20Hz to run, and check the control effect and performance of the system.

(5) Set P21.00=0001 to set positioning mode to position control, namely pulse-string control. There are four types of pulse command mode, which can be set by P21.01 (pulse command mode).

In position control mode, you can check the high bit and low bit of position reference and feedback, P18.02 (count value of Z pulse), P18.00 (actual frequency of encoder), P18.17 (pulse command frequency), and P18.19 (position regulator output), through which you can figure out the relation between P18.08 (position of position reference point) and P18.02 (count value of Z pulse), and between P18.17 (pulse command frequency), P18.18 (pulse command feedforward) and P18.19 (position regulator output).

(6) The position regulator has two gains, namely P21.02 and P21.03, and they can be switched by speed command, torque command and terminals.

(7) When P21.08 (output limit of position controller) is set to 0, the position control will be invalid, and at this point, the pulse string acts as frequency source, P21.13 (position feedforward gain) should be set to 100%, and the speed acceleration/deceleration time is determined by the acceleration /deceleration time of pulse string, the pulse string acceleration/deceleration time of the system can be


adjusted. If the pulse string acts as the frequency source in speed control, you can also set P21.00 to 0000, and set the frequency source reference P00.06 or P00.07 to 12 (set by pulse string AB), at this point, the acceleration/deceleration time is determined by the acceleration/deceleration time of the VFD, meanwhile, the parameters of pulse string AB is still set by P21 group. In speed mode, the filter time of pulse string AB is determined by P21.29.

(8) The input frequency of pulse string is the same with the feedback frequency of encoder pulse, the relation between them can be changed by altering P21.11 (numerator of position command ratio) and P21.12 (denominator of position command ratio).

(9) When running command or servo enabling is valid (by setting P21.00 or terminal function 63), it will enter pulse string servo running mode.

4. Commissioning procedures for spindle positioning

Spindle orientation is to realize orientation functions like zeroing and division based on closed-loop vector control.

(1)–(4) These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control, thus realizing spindle positioning function in either position control or speed control mode.

(5) Set P22.00.bit0=1 to enable spindle positioning, set P22.00.bit1 to select spindle zero input. If the system adopts encoder for speed measurement, set P22.00.bit1 to 0 to select Z pulse input; if the system adopts photoelectric switch for speed measurement, set P22.00.bit1 to 1 to select photoelectric switch as zero input; set P22.00bit2 to select zero search mode, set P22.00.bit3 to enable or disable zero calibration, and select zero calibration mode by setting P22.00.bit7.

(6) Spindle zeroing operation

a) Select the positioning direction by setting P22.00.bit4.

b) There are four zero positions in P22, and you can choose one out of four zero positions by setting zeroing input terminal selection (46, 47) in P05. When executing zeroing function, the motor stops accurately at corresponding zeroing position according to the set positioning direction, which can be viewed through P18.10.

c) The positioning length of spindle zeroing is determined by the deceleration time of accurate-stop and the speed of accurate-stop;

(7) Spindle division operation

There are seven scale-division positions in P22, and you can choose one out of seven scale-division positions by setting scale-division input terminal selection (48, 49, 50) in P05. Enable the corresponding scale-division terminal after the motor stops accurately. Then the motor checks the scale-division position state and switches to the corresponding position incrementally. You can check P18.09.

(8) Priority level of speed control, position control and zeroing

The priority level of speed running is higher than that of the scale division, when the system runs in scale-division mode, if spindle orientation is prohibited, the motor will turn to speed mode or position mode.

The priority level of zeroing is higher than that of the scale division.

The scale-division command is valid when the scale-division terminal changes from 000 state to non-000 state. For example, for the change from 000 to 011, the spindle executes scale division 3. The transition time during terminal switchover needs to be less than 10ms; otherwise, an incorrect scale division command may be executed.

(9) Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. In order to keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

(10) Positioning command selection (bit6 of P22.00)

Electric level signal: Positioning command (zeroing and scale division) can be executed only when there is running command or the servo is enabled.

(11) Spindle reference point selection (bit0 of P22.00)

Encoder Z pulse positioning supports the following spindle positioning modes:

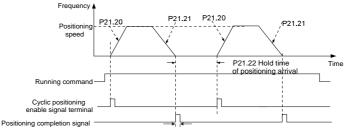
a) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 rigid connection;

b) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 belt connection;

At this point, the belt may slip during high-speed running and cause inaccurate positioning, it is recommended to install proximity switch on the spindle.

c) The encoder is installed on the spindle, and the motor shaft is connected to the spindle with belt, the drive ratio is not necessarily 1:1;

at this time, you need to set P20.06 (speed ratio of the mounting shaft between motor and encoder), and set P22.14 (spindle drive ratio) to 1. As the encoder is not installed on the motor, the control performance of closed-loop vector will be affected.


Proximity switch positioning supports the following spindle positioning modes:

d) The encoder is installed on the spindle, and the motor shaft is connected to the spindle with belt, the drive ratio is not necessarily 1:1;

at this time, you need to set P22.14 (spindle drive ratio).

5. Commissioning procedures for digital positioning

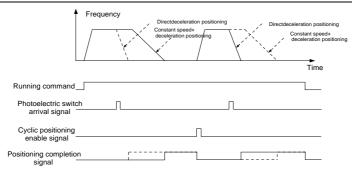
The diagram for digital positioning is shown as follows.

P21.25 Hold time of positioning completion signal

(1)–(4) These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

(5) Set P21.00=0011 to enable digital positioning. Set P21.17, P21.11 and P21.12 (to set positioning displacement) according to actual needs; set P21.18 and P21.19 (to set positioning speed); set P21.20 and P21.21 (to set ACC/DEC time of positioning).

(6) Single positioning operation


Set P21.16.bit1=0. Then the motor executes a single positioning action and keeps at the positioning position according to the setup at step (5).

(7) Cyclic positioning operation

Set P21.16.bit1=1 to enable cyclic positioning. The cyclic positioning is divided into continuous mode and repetitive mode. You can also carry out cyclic positioning through terminal function (no. 55, enable digital positioning cycle)

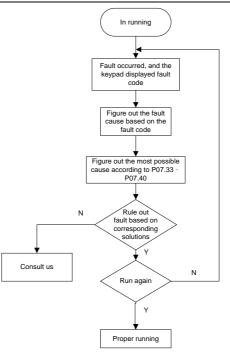
6. Commissioning procedures for positioning of photoelectric switch

Photoelectric switch positioning is to realize positioning function based on closed-loop vector control.

(1)–(4) These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

Set P21.00=0021 to enable photoelectric switch positioning, but note that the photoelectric switch signal can be connected to S8 only, and set P05.03=43; meanwhile, set P21.17, P21.11 and P21.12 (to set positioning displacement) based on actual needs; set P21.21 (DEC time of positioning). However, when the present running speed is too fast or the set positioning displacement is too small, the DEC time of positioning is invalid, and it enters direct deceleration positioning mode.

(6) Cyclic positioning operation


After positioning is done, the motor will stay in current position. You can set cyclic positioning through input terminal function selection (55: enable cyclic digital positioning) in P05 group; when the terminal receives cyclic positioning enable signal (pulse signal), the motor will continue running in the set speed as per the speed mode and re-enter positioning state after encountering photoelectric switch.

(7) Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. In order to keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

6.5.18 Fault handling

The following provides fault handling information.

Function code	Name	Description	Default
P07.27	Type of present fault	0: No fault	0
P07.28	Last fault type	1: Inverter unit U-phase protection (OUt1)	
P07.29	2nd-last fault type	2: Inverter unit V-phase protection (OUt2)	
P07.30	3rd-last fault type	3: Inverter unit W-phase protection (OUt3)	
P07.31	4th-last fault type	4: Overcurrent during acceleration (OC1)	
	5th-last fault type	5: Overcurrent during deceleration (OC2)	
		6: Overcurrent during constant speed running	
		(OC3)	
		7: Overvoltage during acceleration (OV1)	
P07.32		8: Overvoltage during deceleration (OV2)	
		9: Overvoltage during constant speed running	
		(OV3)	
		10: Bus undervoltage fault (UV)	
		11: Motor overload (OL1)	

Function code	Name	Description	Default
		12: VFD overload (OL2)	
		13: Phase loss on input side (SPI)	
		14: Phase loss on output side (SPO)	
		15: Rectifier module overheat (OH1)	
		16: Inverter module overheat (OH2)	
		17: External fault (EF)	
		18: RS485 communication fault (CE)	
		19: Current detection fault (ItE)	
		20: Motor autotuning fault (tE)	
		21: EEPROM operation error (EEP)	
		22: PID feedback offline fault (PIDE)	
		23: Braking unit fault (bCE)	
		24: Running time reached (END)	
		25: Electronic overload (OL3)	
		26: Keypad communication error (PCE)	
		27: Parameter upload error (UPE)	
		28: Parameter download error (DNE)	
		29: PROFIBUS DP communication fault	
		(E_dP)	
		30: Ethernet communication fault (E_NET)	
		31: CANopen communication fault (E-CAN)	
		32: To-ground short-circuit fault 1 (ETH1)	
		33: To-ground short-circuit fault 2 (ETH2)	
		34: Speed deviation fault (dEu)	
		35: Mal-adjustment fault (STo)	
		36: Underload fault (LL)	
		37: Encoder disconnection fault (ENC1O)	
		38: Encoder direction reversal fault (ENC1D)	
		39: Encoder Z-pulse disconnection fault	
		(ENC1Z)	
		40: Safe torque off (STO)	
		41: Channel 1 safety circuit exception (STL1)	
		42: Channel 2 safety circuit exception (STL2)	
		43: Exception in both channels 1 and 2 (STL3)	
		44: Safety code FLASH CRC fault (CrCE)	
		45: PLC card customized fault 1 (P-E1)	
		46: PLC card customized fault 2 (P-E2)	
		47: PLC card customized fault 3 (P-E3)	

Function code	Name	Description	Default
		48: PLC card customized fault 4 (P-E4)	
		49: PLC card customized fault 5 (P-E5)	
		50: PLC card customized fault 6 (P-E6)	
		51: PLC card customized fault 7 (P-E7)	
		52: PLC card customized fault 8 (P-E8)	
		53: PLC card customized fault 9 (P-E9)	
		54: PLC card customized fault 10 (P-E10)	
		55: Duplicate expansion card type (E-Err)	
		56: Encoder UVW lost (ENCUV)	
		57: PROFINET communication timeout fault	
		(E-PN)	
		58: CAN communication fault (SECAN)	
		59: Motor overtemperature fault (OT)	
		60: Failure to identify the card at slot 1 (F1-Er)	
		61: Failure to identify the card at slot 2 (F2-Er)	
		62: Failure to identify the card at slot 3 (F3-Er)	
		63: Communication timeout of the card at slot	
		1 (C1-Er)	
		64: Communication timeout of the card at slot	
		2 (C2-Er)	
		65: Communication timeout of the card at slot	
		3 (C3-Er)	
		66: EtherCat communication fault (E-CAT)	
		67: Bacnet communication fault (E-BAC)	
		68: DeviceNet communication fault (E-DEV)	
		69: CAN slave fault in master/slave	
		synchronization (S-Err)	
		70: VFD disabled (dIS)	
		71: Contactor feedback fault (tbE)	
		72: Brake feedback fault (FAE)	
		73: Torque verification fault (tPF)	
		74: Operating lever zero-position fault (STC)	
		75: Low speed running protection fault (LSP)	
		76: Terminal command exception (tCE)	
		77: Power-on terminal command exception	
		(POE)	
		78: Loose rope protection fault (SLE)	
		79: Brake failure (bE)	

Function code	Name	Description	Default
code	Name	 80: Master/slave position synchronization fault (ELS) 81: Analog speed reference deviation fault (AdE) 82: PT100 overtemperature (OtE1) 83: PT1000 overtemperature (OtE2) 84: Set frequency fault (SFE) 85: Current imbalance fault (Cuu) 86: PTC overtemperature fault (PtcE) 87: Overload fault (E-OvL) 88: Overspeed fault (E-OS) 89: Stalling fault (E-dS) 90: 216 communication disconnection fault (E-216) 	Default
		91: External fault received by 216 communication card (216EF)	
P07.33	Running frequency at present fault		0.00Hz
P07.34	Ramp reference frequency at present fault		0.00Hz
P07.35	Output current at present fault		0V
P07.36	Output current at present fault		0.0A
P07.37	Bus voltage at present fault		0.0V
P07.38	Temperature at present fault		0.0°C
P07.39	Input terminal status at present fault		0
P07.40	Output current status at present fault		0
P07.41	Running frequency at last fault		0.00Hz
P07.42	Ramp reference frequency at last fault		0.00Hz
P07.43	Output voltage at last fault		0V

Function code	Name	Description	Default
P07.44	Output current at last fault		0.0A
P07.45	Bus voltage at last fault		0.0V
P07.46	Temperature at last fault		0.0°C
P07.47	Input terminal status at last fault		0
P07.48	Output terminal status at last fault		0
P07.49	Running frequency at 2nd-last fault		0.00Hz
P07.50	Ramp reference frequency at 2nd-last fault		0.00Hz
P07.51	Output voltage at 2nd-last fault		0V
P07.52	Output current at 2nd-last fault		0.0A
P07.53	Bus voltage at 2nd-last fault		0.0V
P07.54	Temperature at 2nd-last fault		0.0°C
P07.55	Input terminal status at 2nd-last fault		0
P07.56	Output terminal status at 2nd-last fault		0

7 Function parameter list

7.1 What this chapter contains

This chapter lists all the function codes and corresponding description of each function code.

7.2 Function parameter list

The function parameters of the VFD are divided into groups by function. Among the function parameter groups, groups P90–P93 are hoisting function groups, P98 is the analog input and output calibration group, while P99 contains the factory function parameters, which are user inaccessible. Each group includes several function codes (each function code identifies a function parameter). A three-level menu style is applied to function codes. For example, "P08.08" indicates the 8th function code in P08.

The function group numbers correspond to the level-1 menus, the function codes correspond to the level-2 menus, and the function parameters correspond to the level-3 menus.

1. The content of the function code table is as follows:

Column 1 "Function code ": Code of the function group and parameter

Column 2 "Name": Full name of the function parameter

Column 3 "Description": Detailed description of the function parameter

Column 4 "Default": Initial value set in factory

Column 5 "Modify": Whether the parameter can be modified, and conditions for the modification

"O" indicates that the value of the parameter can be modified when the VFD is in stopped or running state.

"O" indicates that the value of the parameter cannot be modified when the VFD is in running state.

"•" indicates that the value of the parameter is detected and recorded, and cannot be modified.

(The VFD automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.)

- The parameters adopt the decimal system (DEC). If the hexadecimal system is adopted, all bits are mutually independent on data during parameter editing, and the setting ranges at some bits can be hexadecimal (0–F).
- 3. "Default" indicates the factory setting of the function parameter. If the value of the parameter is detected or recorded, the value cannot be restored to the factory setting.
- 4. To better protect parameters, the VFD provides the password protection function. After a password is set (that is, <u>P07.00</u> is set to a non-zero value), "0.0.0.0.0" is displayed when you press the <u>PRG/ESC</u> key to enter the function code editing interface. You need to enter the correct user password to enter the interface. For the factory parameters, you need to enter the correct factory password to enter the interface. (You are not advised to modify the factory

parameters. Incorrect parameter setting may cause operation exceptions or even damage to the VFD.) If password protection is not in locked state, you can change the password any time. You can set <u>P07.00</u> to 0 to cancel the user password. When <u>P07.00</u> is set to a non-zero value during power-on, parameters are prevented from being modified by using the user password function. When you modify function parameters through serial communication, the user password protection function is also applicable and compliant with the same rule.

Function	Name	Description	Default	Modify
code		·		
		0: Sensorless vector control (SVC) mode 0		
		1: Sensorless vector control (SVC) mode 1		
	Speed control	2: Space voltage vector control mode		
P00.00	mode	3: Closed-loop vector control mode	2	O
	mode	Note: Before using a vector control mode (0,		
		1, or 3), enable the VFD to perform motor		
		parameter autotuning first.		
	Channel of	0: Keypad		
P00.01	running	1: Terminal	0	0
	commands	2: Communication		
		0: Modbus		
		1: PROFIBUS/CANopen/DeviceNet		
		2: Ethernet		
		3: EtherCAT/Profinet		
	Communication mode of running	4: Programmable expansion card		
P00.02		5: Wireless communication card	0	0
	commands	6: 216 communication card		
		Note: The options 1, 2, 3, 4, 5, and 6 are		
		add-on functions and are available only		
		when corresponding expansion cards are		
		configured.		
		Used to set the max. output frequency of the		
		VFD. Pay attention to the function code because		
D 00.00	Max. output	it is the foundation of the frequency setting and	50.0011	
P00.03	frequency	the speed of acceleration (ACC) and	50.00Hz	O
		deceleration (DEC).		
		Setting range: Max (<u>P00.04</u> , 10.00)–150.00Hz		
		The upper limit of the running frequency is the		
P00.04	Upper limit of	upper limit of the output frequency of the VFD,	50.00Hz	O
	running frequency	which is lower than or equal to the max. output		

P00 group--Basic functions

Function code	Name	Description	Default	Modify
code		frequency.		
		When the set frequency is higher than the upper		
		limit of the running frequency, the upper limit of		
		the running frequency is used for running.		
		Setting range: <u>P00.05</u> – <u>P00.03</u> (Max. output		
		frequency)		
		The lower limit of the running frequency is the		
		lower limit of the output frequency of the VFD,		
		When the set frequency is lower than the lower		
		limit of the running frequency, the lower limit of		
P00.05	Lower limit of	the running frequency is used for running.	0.00Hz	O
F 00.05	running frequency	Note: Max. output frequency ≥ Upper limit of	0.00112	
		frequency \geq Lower limit of frequency		
		Setting range: 0.00Hz– <u>P00.04</u> (Upper limit of		
		running frequency)		
	Setting channel of			
P00.06	0	1: Al1	0	0
P00.06	A frequency command	2: Al2	0	0
	commanu	3: AI3		
		4: High-speed pulse HDIA		
		5: Simple PLC program		
		6: Multi-step speed running		
		7: PID control		
		8: Modbus communication		
	Cotting channel of			
P00.07	•	9: PROFIBUS/CANopen/DeviceNet communication	1	
P00.07	B frequency command	10: Ethernet communication	1	0
	commanu	11: High-speed pulse HDIB		
		12: Pulse train AB		
		13: EtherCAT/Profinet communication		
		14: Programmable expansion card		
		15: Multi-step speed run		
		16: 216 communication		
	Peference object			
P00.08	Reference object	0: Max. output frequency	0	0
P00.08	of B frequency	1: A frequency command	U	
	command Combination	0: A		
P00.09		0: A 1: B	0	0
	mode of setting	1. D		1

Function code	Name		Desci	ription		Default	Modify
code	source	2: (A+B)					
	300100	3: (A-B)					
		4: Max(A	B)				
		5: Min(A,	. ,				
			and B frequenc	v commands	select the		
			or setting, the v	•			
P00.10	Frequency set		ne of the freque		-	50.00Hz	0
	through keypad	Ŭ	ange: 0.00 Hz–	•			
		frequenc	y)		•		
		ACC time	e means the tim	ne needed if	the VFD	Model	
P00.11	ACC time 1	speeds u	p from 0Hz to t	he max. outp	out	depended	0
		frequenc	, y (<u>P00.03</u>). DE	C time mean	s the time		
		needed it	the VFD spee	ds down fron	n the max.		
		output fre	equency (<u>P00.0</u>	3) to 0Hz. Th	ne VFD has		
P00.12	DEC time 1	four grou	ps of ACC/DEC	time, which	can be	Model	0
		selected	by P05. The fa	ctory default	ACC/DEC	depended	
		time of th	e VFD is the fi	rst group.			
		<u>P00.11</u> a	nd <u>P00.12</u> setti	ng range: 0.0)–3600.0s		
		0: Run at	the default dire	ection.			
		1: Run at	the opposite d	irection.			
P00.13	Running direction	2: Disabl	e reverse runni	ng		0	0
		Note: It c	an be modified	only when P	<mark>11.26</mark> is 1		
			special function	ons are enab	led.		
		Carrier frequency	Electro magnetic N noise	oise and leakage current	Cooling level		
		1kHz	♦ High	♦ Low	Low		
		10kHz					
		15kHz	♥ Low	🕈 High	♥ High	Model	
P00.14	Carrier frequency	Mapping	between mode	ls and carrie	r	depended	0
		frequenc				depended	
		•		Default ca	rrier		
		Model		frequency			
			0.4–11kW	4kHz			
		380V	>15kW	1.5kHz	2		
		660V	22–55kW	4kHz			
L						l	L

Function code	Name	Description	Default	Modify
		>75kW 2kHz		
	L. L	Advantage of high carrier frequency: ideal		
		current waveform, little current harmonic wave		
		and motor noise.		
		Disadvantage of high carrier frequency:		
		increasing the switch loss, increasing VFD		
		temperature and the impact to the output		
		capacity. The VFD needs to derate on high		
		carrier frequency. At the same time, the leakage		
		and electrical magnetic interference will		
		increase.		
		On the contrary, an extremely-low a carrier		
		frequency may cause unstable operation at low		
		frequency, decrease the torque, or even lead to		
		oscillation.		
		The carrier frequency has been properly set in		
		the factory before the VFD is delivered. In		
		general, you do not need to modify it.		
		When the frequency used exceeds the default		
		carrier frequency, the VFD needs to derate by		
		10% for each increase of 1k carrier frequency.		
		Setting range: 1.0–15.0kHz		
		0: No operation		
		1: Rotary autotuning.		
		Comprehensive motor parameter autotuning. It		
		is recommended to use rotating autotuning		
		when high control accuracy is needed.		
		2: Static autotuning 1 (comprehensive		
		autotuning); static autotuning 1 is used in cases		
D00 / 7	Motor parameter	where the motor cannot be disconnected from		
P00.15	autotuning	load.	0	O
	-	3: Static autotuning 2 (partial		
		autotuning); when the present motor is		
		motor 1, only <u>P02.06</u> , <u>P02.07</u> , and <u>P02.08</u>		
		are autotuned; when the present motor		
		is motor 2, only <u>P12.06</u> , <u>P12.07</u> , and <u>P12.08</u>		
		are autotuned.		
		4: Dynamic autotuning 2 (valid only for AMs)		

Function code	Name	Description	Default	Modify
		5: Partial parameter static autotuning 2 (valid only for AMs)		
P00.16	AVR function selection	0: Disable 1: Valid during the whole procedure The auto-adjusting function of the VFD can eliminate the impact on the output voltage of the VFD because of the bus voltage fluctuation.	1	0
P00.18	Function parameter restore	Setting range of P00.18: 0–6 0: No operation 1: Restore default values 2: Clear fault records 3: Lock keypad parameters 4–6: Reserved Note: After the selected operation is performed, the function code is automatically restored to 0. Restoring the default values may delete the user password. Exercise caution when using this function.	0	0

P01 group--Start and stop control

Function code	Name	Description	Default	Modify
P01.00	Start mode	 0: Direct start 1: Start after DC braking 2: Speed tracking restart 1 3: Speed tracking restart 2 Note: It can be modified only when <u>P11.26</u> is 1 indicating special functions are enabled. 	0	O
P01.01	Starting frequency of direct start	The function code indicates the initial frequency during VFD start. See <u>P01.02</u> (Starting frequency hold time) for detailed information. Setting range: 0.00–50.00Hz	0.50Hz	0
P01.02	Starting frequency hold time	fmax	0.0s	Ø

Function code	Name	Description	Default	Modify
		Setting a proper starting frequency can increase the torque during VFD start. During the hold time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD runs from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the VFD stops running and keeps in the standby state. The starting frequency is not limited in the lower limit frequency. Setting range: 0.0–50.0s		
P01.03	Braking current before start	The VFD performs DC braking with the braking current before start and it speeds up after the	0.0%	0
P01.04	Braking time before start	DC braking time. If the set DC braking time is 0, DC braking is invalid. Stronger braking current indicates larger braking power. The DC braking current before start is a percentage of the VFD rated output current. P01.03 setting range: 0.0–100.0% P01.04 setting range: 0.00–50.00s	0.00s	O
P01.05	ACC/DEC mode	Used to indicate the changing mode of the frequency during start and running. 0: Linear type. The output frequency increases or decreases linearly. Output frequency f fmax 	0	Ø

Function code	Name	Description	Default	Modify
		fmax fmax 		
		1, you also need to set <u>P01.06</u> , <u>P01.07</u> ,		
	Time of starting	P01.27, and P01.28. The curvature of S curve is determined by the		
P01.06	segment of ACC S	ACC range and ACC/DEC time.	0.1s	O
P01.07	curve Time of ending segment of ACC S curve	Setting range: 0.0–50.0s	0.1s	O
P01.08	Stop mode	0: Decelerate to stop. After a stop command takes effect, the VFD lowers output frequency based on the DEC mode and the defined DEC time; after the frequency drops to the stop speed (P01.15), the VFD stops. 1: Coast to stop. After a stop command takes effect, the VFD stops output immediately; and the load coasts to stop according to mechanical inertia.	0	0
P01.09	Starting frequency of DC braking for stop	Starting frequency of DC braking for stop: During the deceleration to stop, the VFD starts DC braking for stop when running frequency	0.00Hz	0
P01.10	Demagnetization time	reaches the starting frequency determined by P01.09.	0.00s	0
P01.11	DC braking current for stop	Wait time before DC braking: The VFD blocks the output before starting DC braking. After this	0.0%	0
P01.12	DC braking time for stop	wait time, DC braking is started so as to prevent overcurrent caused by DC braking at high	0.00s	0

Function code	Name	Description	Default	Modify
		speed. DC braking current for stop: It indicates the applied DC braking energy. Stronger current indicates greater DC braking effect. DC braking time for stop: It indicates the hold time of DC braking. If the time is 0, DC braking is invalid, and the VFD decelerates to stop within the specified time. Poil_23 Pt3_14 Poil_04 Deceleration Poil_29 setting range: 0.00Hz–P00.03 (Max. output frequency) P01.10 setting range: 0.00–30.00s P01.11 setting range: 0.00–100.0% (of the rated VFD output current)		
P01.13	FWD/REV running deadzone time	P01.12 setting range: 0.0–50.0s This function code indicates the transition time specified in P01.14 during FWD/REV rotation switching. See the following figure: Output frequency f Starting frequency Starting Requency Starting Requency Time t	0.0s	0
P01.14	FWD/REV running switching mode	0: Switch at zero frequency1: Switch at the starting frequency2: Switch after the speed reaches the stopspeed with a delay	1	O
P01.15	Stop speed	0.00–100.00Hz	0.50Hz	O
P01.16	Stop speed	0: Detect by the set speed (unique in space	0	O

Function code	Name	Description	Default	Modify
Couc	detection mode	voltage vector control mode)		
P01.17	Stop speed	1: Detect by the feedback speed 0.00–100.00s	0.50s	O
P01.18	detection time Terminal-based running command protection at power-on	When the channel of running commands is terminal control, the system detects the state of the running terminal during power-on. 0: The terminal running command is invalid at power-on. Even the running command is considered as valid during power-on, the VFD does not run and it keeps the protection state until the running command is canceled and enabled again. 1: The terminal running command is valid at power-on. If the running command is considered as valid during power-on, the VFD is started automatically after the initialization. 2: The terminal running command is invalid at power-on, and a fault is reported. (Power-on terminal command exception POE). During power on, the VFD does not run but reports the fault, although the running command terminal is valid. The fault disappears only when the running command is canceled. Note: Exercise caution before using this function. Otherwise, serious result may follow.	0	0
P01.19	Action selected when running frequency less than frequency lower limit (valid when frequency lower limit greater than 0)	The function code determines the running state of the VFD when the set frequency is lower than the lower-limit one. 0: Run at the frequency lower limit 1: Stop 2: Sleep The VFD coasts to stop when the set frequency is lower than the lower-limit one. If the set frequency exceeds the lower limit one again and it lasts for the time set by <u>P01.20</u> , the VFD resumes the running state automatically.	0	٥

Function code	Name	Description	Default	Modify
P01.20	Wake-up-from-sle ep delay	Used to set the wake-up-from-sleep delay time. When the running frequency of the VFD is lower than the lower limit, the VFD becomes standby. When the set frequency exceeds the lower limit one again and it lasts for the time set by P01.20, the VFD runs automatically. Set frequency curve: Running frequency frequ	0.0s	0
P01.21	Power-off restart selection	Indicates whether the VFD automatically runs after re-power on. 0: Disable 1: Enable. If the restart condition is met, the VFD runs automatically with the wait time <u>P01.22</u> .	0	0
P01.22	Wait time for restart after power-off	Indicates the wait time before the automatic running of the VFD that is re-powered on. Output frequency t1=P01.22 t2=P01.23 t1=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t2=P01.23 t2=P01.23 t2=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t2=P01.23 t2=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t2=P01.23 t2=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t1=P01.22 t2=P01.23 t1=P01.22 t2=P01.23 t1=P01.22 t1=P01.22 t1=P01.22 t1=P01.22 t1=P01.23 t1=P01.22 t1=P01.23 t1=P01.22 t1=P01.23 t1=P01.22 t1=P01.23 t1=P01.22 t1=P01.23 t1=P01.22 t1=P01.23 t1=P	1.0s	0
P01.23	Start delay	After a VFD running command is given, the VFD is in standby state and restarts with the delay defined by <u>P01.23</u> to implement brake release. Setting range: 0.0–600.0s	0.0s	0

Function code	Name	Description	Default	Modify
P01.24	Stop speed delay	0.0–600.0s	0.0s	0
P01.25	Open-loop 0Hz output selection	0: Output without voltage 1: Output with voltage 2: Output with the DC braking current for stop	0	0
P01.26	DEC time for emergency stop	0.0-60.0s	2.0s	0
P01.27	Time of starting segment of DEC S curve	0.0–50.0s	0.1s	Ø
P01.28	Time of ending segment of DEC S curve	0.0–50.0s	0.1s	O
P01.29	Short-circuit braking current	When the VFD starts in direct start mode (<u>P01.00</u> =0), set <u>P01.30</u> to a non-zero value to	0.0%	0
P01.30	Hold time of short-circuit braking for start	enter short-circuit braking. During stop, if the running frequency of VFD is lower than the starting frequency of brake for	0.00s	0
P01.31	Hold time of short-circuit braking for stop	stop (<u>P01.09</u>), set <u>P01.31</u> to a non-zero value to enter short-circuit braking for stop, and then carry out DC braking in the time set by <u>P01.12</u> . (Refer to the descriptions for <u>P01.09–P01.12</u> .) <u>P01.29</u> setting range: 0.0–150.0% (of the rated VFD output current) <u>P01.30</u> setting range: 0.0–50.0s <u>P01.31</u> setting range: 0.0–50.0s	0.00s	0
P01.32	Pre-exciting time for jogging	0–10.000s	0.000s	0
P01.33	Starting frequency of braking for stop in jogging		0.00Hz	0
P01.34	Sleep delay	0–3600.0s	0.0s	0

P02 group—Parameters of motor 1

Function code	Name	Description	Default	Modify
P02.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0	0
P02.01	Rated power of	0.1–3000.0kW	Model	O

Function code	Name	Description	Default	Modify
	AM 1		depended	
P02.02	Rated frequency of AM 1	0.01Hz– <u>P00.03(</u> Max. output frequency)	50.00Hz	O
P02.03	Rated speed of AM 1	1–36000rpm	Model depended	0
P02.04	Rated voltage of AM 1	0–1200V	Model depended	0
P02.05	Rated current of AM 1	0.8–6000.0A	Model depended	0
P02.06	Stator resistance of AM 1	0.001–65.535Ω	Model depended	0
P02.07	Rotor resistance of AM 1	0.001–65.535Ω	Model depended	0
P02.08	Leakage inductance of AM 1	0.1–6553.5Mh	Model depended	0
P02.09	Mutual inductance of AM 1	0.1–6553.5Mh	Model depended	0
P02.10	No-load current of AM 1	0.1–6553.5A	Model depended	0
P02.11	Magnetic saturation coefficient 1 of iron core of AM 1	0.0–100.0%	80.0%	0
P02.12	Magnetic saturation coefficient 2 of iron core of AM 1	0.0–100.0%	68.0%	0
P02.13	Magnetic saturation coefficient 3 of iron core of AM 1	0.0–100.0%	57.0%	0
P02.14	Magnetic saturation coefficient 4 of iron core of AM 1	0.0–100.0%	40.0%	0
P02.15	Rated power of	0.1–3000.0kW	Model	O

Function code	Name	Description	Default	Modify
	SM 1		depended	
P02.16	Rated frequency of SM 1	0.01Hz– <u>P00.03(</u> Max. output frequency)	50.00Hz	O
P02.17	Number of pole pairs of SM 1	1–128	2	O
P02.18	Rated voltage of SM 1	0–1200V	Model depended	0
P02.19	Rated current of SM 1	0.8–6000.0A	Model depended	O
P02.20	Stator resistance of SM 1	0.001–65.535Ω	Model depended	0
P02.21	Direct-axis inductance of SM 1	0.01–655.35Mh	Model depended	0
P02.22	Quadrature-axis inductance of SM 1	0.01–655.35Mh	Model depended	0
P02.23	Counter-emf of SM 1	0–10000	300	0
P02.24	Reserved	0x0000–0xFFFF	0	•
P02.25	Reserved	0%–50.0% (of the motor rated current)	10%	•
P02.26	Overload protection of motor 1	 0: No protection 1: Common motor protection (with low-speed compensation). As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30Hz. 2: Variable-frequency motor protection (without low speed compensation). Because the heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, it is not necessary to adjust the protection value at low speed running. 	2	Ø
P02.27	Overload	Motor overload multiples M=lout/(In*K)	100.0%	0

Function code	Name	Description	Default	Modify
	protection coefficient of motor 1	In is rated motor current, lout is VFD output current, K is motor overload protection coefficient. A smaller value of "K" indicates a bigger value of "M". When M=116%, protection is performed after motor overload lasts for 1 hour; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately.		
P02.28	Power display calibration coefficient of	Setting range: 20.0% –120.0% The function code can be used to adjust the power display value of motor 1. However, it does not affect the control performance of the VFD.	1.00	0
P02.29	motor 1 Parameter display of motor 1	Setting range: 0.00–3.00 0: Display by motor type. In this mode, only parameters related to the present motor type are displayed. 1: Display all. In this mode, all the motor parameters are displayed.	0	0
P02.30	System inertia of motor 1	0–30.000kgm ²	0	0
P02.31	Max. slip limit	When P02.31=0, the max. slip limit cannot be used.	0	O
P02.32	Enabling flux-weakening two-zone control in closed-loop mode	0–1	0	O

P03 group--Vector control of motor 1

Function code	Name	Description	Default	Modify
P03.00	Speed-loop proportional gain 1	The parameters <u>P03.00</u> – <u>P03.05</u> are applicable only to vector control mode. Below the switching frequency 1 (<u>P03.02</u>), the speed-loop PI	20.0	0
P03.01	Speed-loop integral time 1	parameters are: <u>P03.00</u> and <u>P03.01</u> . Above the switching frequency 2 (<u>P03.05</u>), the speed-loop	0.200s	0
P03.02	Low-point frequency for switching	PI parameters are: <u>P03.03</u> and <u>P03.04</u> . PI parameters are obtained according to the linear change of two groups of parameters. See the	5.00Hz	0
P03.03	Speed-loop proportional gain 2	following figure: ▲ PI parameter P03.00, P03.01	20.0	0
P03.04	Speed-loop integral time 2		0.200s	0
P03.05	High-point frequency for switching	P03.03, P03.04 P03.02 P03.05 The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. PI parameters have a close relationship with the inertia of the system. Adjust PI parameters depending on different loads to meet various demands. <u>P03.00</u> setting range: 0.0–200.0 <u>P03.01</u> setting range: 0.00Hz– <u>P03.05</u> <u>P03.03</u> setting range: 0.00–200.0 <u>P03.04</u> setting range: 0.000–10.000S <u>P03.05</u> setting range: 0.000–10.000S <u>P03.05</u> setting range: 0.000–10.000S	10.00Hz	0

Function code	Name	Description	Default	Modify
		output frequency)		
P03.06	Speed-loop output filter	0–8 (corresponding to 0–2 ⁸ /10ms)	0	0
P03.07	Electromotive slip compensation coefficient of vector control	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the	100%	0
P03.08	Braking slip compensation coefficient of vector control	system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50–200%	100%	0
P03.09	Current-loop proportional coefficient P	The two function codes impact the dynamic response speed and control accuracy of the system. Generally, you do not need to modify	1000	0
P03.10	Current-loop integral coefficient I	the two function codes. Applicable to SVC mode 0 (<u>P00.00</u> =0), SVC mode 1 (P00.00=1), and closed-loop vector control mode (<u>P00.00</u> =3). Setting range: 0–65535	1000	0
P03.11	Torque setting method	0–1: Keypad (<u>P03.12</u>) 2: Al1 (100% corresponding to triple the motor rated current) 3: Al2 4: Al3 (same as the above) 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 11: EtherCAT/Profinet communication 12: Programmable expansion card 13: 216 communication	0	0
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	20.0%	0

Function code	Name	Description	Default	Modify
P03.13	Torque reference filter time	0.000–10.000s	0.010s	0
P03.14	Setting source of forward rotation upper-limit frequency in torque control	 0: Keypad (P03.16) 1: Al1 (100% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Al3 (same as the above) 4: Pulse frequency HDIA (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication (same as the above) 6: Modbus communication (same as the above) 7: PROFIBUS/CANopen/DeviceNet communication (same as the above) 8: Ethernet communication (same as the above) 9: Pulse frequency HDIB (same as the above) 9: Pulse frequency HDIB (same as the above) 10: EtherCAT/Profinet communication 11: Programmable expansion card 12: 216 communication 	0	0
P03.15	Setting source of reverse rotation upper-limit frequency in torque control	0: Keypad (<u>P03.17</u>) 1–12: Same as those for P03.14	0	0
P03.16	Forward rotation upper-limit frequency set through keypad in torque control	Used to set the frequency upper limits. 100% corresponds to the max. frequency. <u>P03.16</u> sets the value when <u>P03.14</u> =1; <u>P03.17</u> sets the value	50.00Hz	0
P03.17	Reverse rotation upper-limit frequency set through keypad in torque control	when <u>P03.15</u> =1. Setting range: 0.00Hz– <u>P00.03</u> (Max. output frequency)	50.00Hz	0
P03.18	Setting source of electromotive torque upper limit	0: Keypad (<u>P03.20</u>) 1: Al1 (100% corresponding to triple the motor rated current) 2: Al2 3: Al3 4: Pulse frequency HDIA	0	0

Function code	Name	Description	Default	Modify
		 5: Modbus communication 6: PROFIBUS/CANopen/DeviceNet communication 7: Ethernet communication 8: Pulse frequency HDIB (100% corresponding to triple the motor rated current) 9: EtherCAT/Profinet communication 10: Programmable expansion card 11: 216 communication 		
P03.19	Setting source of braking torque upper limit	0: Keypad (<u>P03.21</u>) 1–11: Same as those for P03.18	0	0
P03.20	Electromotive torque upper limit set through keypad	0.0–300.0% (of the motor rated current) Note: It can be modified only when P11.26=1	250.0%	0
P03.21	Braking torque upper limit set through keypad	indicating special functions are enabled.	250.0%	0
P03.22	Weakening coefficient in constant power zone	Used when the AM is in flux-weakening control.	0.3	0
P03.23	Lowest weakening point in constant power zone	Coefficient of motor 0.1 1.0 2.0 Min. flux-weakening limit of motor The function codes P03.22 and P03.23 are valid at constant power. The motor enters the flux-weakening state when the motor runs above the rated speed. Change the flux-weakening curvature by modifying the flux-weakening control coefficient. The larger the coefficient, the steeper the curve, the smaller the coefficient, the	20%	0

Function code	Name	Description	Default	Modify
code		smoother the curve.		
		P03.22 setting range: 0.1–2.0		
		P03.23 setting range: 10% –100.0%		
		P03.24 sets the max. output voltage of the VFD,		
D02.24		which is the percentage of motor rated voltage.		
P03.24	Max. voltage limit	Set the value according to onsite conditions.	100.0%	0
		Setting range: 0.0–120%		
		Pre-exciting is performed for the motor when the		
		VFD starts up. A magnetic field is built up inside		
P03.25	Pre-exciting time	the motor to improve the torque performance	0.000s	0
	-	during the start process.		
		Setting range: 0.000–10.000s		
D 00.00	Flux-weakening	0.0000	1000	_
P03.26	proportional gain	0–8000	1000	0
	Speed display			
P03.27	selection in vector	0: Display the actual value	0	
P03.27	control	1: Display the set value	0	0
	Static friction			
P03.28	compensation	0.0–100.0%	0.0%	0
	coefficient			
	Corresponding			
P03.29	frequency point of	0.50– <u>P03.31</u>	1.00Hz	0
	static friction			
	High speed			
P03.30	friction	0.0–100.0%	0.0%	0
1 00.00	compensation		0.070	Ŭ
	coefficient			
	Corresponding			
	frequency of high			
P03.31	speed friction	<u>P03.29</u> –400.00kHz	50.00Hz	0
	torque			
	Enabling torque	0: Disable		
P03.32	control	1: Enable	0	O
P03.33	Flux-weakening	0-8000	1200	0
FU3.33	integral gain		1200	0

Function	Name	Description	Default	Modify
code	Humo	Decemption	Donaun	mouny
P03.34	Flux-weakening control mode selection	0–0x111 Ones place: Control mode selection 0: Mode 0 1: Mode 1 2: Mode 2 Tens place: Compensation of inductance saturation coefficient 0: Yes 1: No Hundreds place: Reserved 0: Mode 0 1: Mode 1	0x000	0
P03.35	Control optimization setting	0–0x1111 Ones place: Torque command selection 0: Torque giving 1: Torque current reference Tens place: Reserved 0: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved 0: Reserved 1: Reserved Range: 0x0000–0x1111	0x0000	0
P03.36	Speed-loop differential gain	0.00–10.00s	0.00s	0
P03.37	High-frequency current-loop proportional coefficient	In the closed-loop vector control mode (<u>P00.00</u> =3), when the frequency is lower than the current-loop high-frequency switching threshold (<u>P03.39</u>), the current-loop PI	1000	0
P03.38	High-frequency current-loop integral coefficient	parameters are <u>P03.09</u> and <u>P03.10</u> ; and when the frequency is higher than the current-loop high-frequency switching threshold, the	1000	0
P03.39	Current-loop high-frequency switching threshold	current-loop PI parameters are <u>P03.37</u> and <u>P03.38</u> . <u>P03.37</u> setting range: 0–65535 <u>P03.38</u> setting range: 0–65535	100.0%	0

Function code	Name	Description	Default	Modify
		P03.39 setting range: 0.0–100.0% (of the max. frequency)		
P03.40	Enabling inertia compensation	0: Disable 1: Enable	0	0
P03.41	Upper limit of inertia compensation torque	The max. inertia compensation torque is limited to prevent inertia compensation torque from being too large. Setting range: 0.0–150.0% (of the motor rated torque)	10.0%	0
P03.42	Inertia compensation filter times	Filter times of inertia compensation torque, used to smooth inertia compensation torque. Setting range: 0–10	7	0
P03.43	Inertia identification torque	Due to friction force, it is required to set certain identification torque for the inertia identification to be performed properly. 0.0–100.0% (of the motor rated torque)	10.0%	0
P03.44	Enabling inertia identification	0: No operation 1: Enable	0	O
P03.45	Current loop proportional coefficient after autotuning	0–65535	0	0
P03.46	Current integral proportional coefficient after autotuning	0–65535	0	0

P04 group--V/F control

Function code	Name	Description	Default	Modify
P04.00	V/F curve setting of motor 1	This group of function code defines the V/F curve of motor 1 to meet the needs of different loads. 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7)	0	O

Function code	Name	Description	Default	Modify
code		 4: Torque-down V/F curve (power of 2.0) Curves 2 – 4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from F and F can be adjusted through the frequency setting channel set by P00.06 or the voltage setting channel set by P04.27 to change the characteristics of the 		
		curve. Note: In the following figure, $V_{\rm b}$ is the motor		
		rated voltage and f _b is the motor rated		
		frequency.		
P04.01	Torque boost of motor 1	In order to compensate for low-frequency torque	0.0%	0
	motor i	characteristics, you can make some boost		
P04.02	Torque boost cut-off of motor 1	compensation for the output voltage. <u>P04.01</u> is relative to the max. output voltage V _b . <u>P04.02</u> defines the percentage of cut-off frequency of manual torque boost to the rated motor frequency f_b . Torque boost can improve the low-frequency torque characteristics of V/F. You need to select torque boost based on the load. For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at over-excitation, which may cause increased output current and motor overheating, thus decreasing the efficiency. When torque boost is set to 0.0%, the VFD uses automatic torque boost. Torque boost cut-off threshold: Below this	20.0%	0

Function code	Name	Description	Default	Modify
code		frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost.		
		<u>P04.01</u> setting range: 0.0%: Automatic; 0.1%–10.0% <u>P04.02</u> setting range: 0.0% –50.0%		
P04.03	V/F frequency point 1 of motor 1	When <u>P04.00</u> =1 (multi-dot V/F curve), you can set the V/F curve through <u>P04.03</u> – <u>P04.08</u> .	0.00Hz	0
P04.04	V/F voltage point 1 of motor 1	The V/F curve is generally set according to the load characteristics of the motor.	00.0%	0
P04.05	V/F frequency point 2 of motor 1	Note: V1 < V2 < V3, f1 < f2 < f3. Too high voltage for low frequency will cause motor	0.00Hz	0
P04.06	V/F voltage point 2 of motor 1	overheat or damage and cause VFD overcurrent stall or overcurrent protection.	0.0%	0
P04.07	V/F frequency point 3 of motor 1	Output voltage	0.00Hz	0
P04.08	V/F voltage point 3 of motor 1	V3 V3 V2 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1	00.0%	0

Function code	Name	Description	Default	Modify
		rated voltage of motor 1)		
P04.09	V/F slip compensation gain of motor 1	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\Delta f=f_b-n^*p/60$ Of which, f_b is the rated frequency of the motor, corresponding to function code <u>P02.02</u> . n is the rated rotating speed of the motor, corresponding to function code <u>P02.03</u> . p is the number of pole pairs of the motor. 100.0% corresponds to the rated slip frequency Δ f of motor 1. Setting range: 0.0–200.0%	0.0%	0
P04.10	Low-frequency oscillation control factor of motor 1	In space voltage vector control mode, the motor,	10	0
P04.11	High-frequency oscillation control factor of motor 1	frequencies, which may cause unstable motor running, or even VFD overcurrent. You can adjust the two function codes properly to	10	0
P04.12	Oscillation control threshold of motor 1	eliminate such phenomenon. <u>P04.10</u> setting range: 0–100 <u>P04.11</u> setting range: 0–100 <u>P04.12</u> setting range: 0.00Hz– <u>P00.03</u> (Max. output frequency)	30.00Hz	0
P04.13	V/F curve setting of motor 2	This group of function code defines the V/F curve of motor 2 to meet the needs of different loads. 0: Straight-line V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F curve (V/F separation) Note: Refer to the description for <u>P04.00</u> .	0	0
P04.14	Torque boost of motor 2	Note: Refer to the descriptions for P04.01 and P04.02.	0.0%	0

Function code	Name	Description	Default	Modify
P04.15	Torque boost cut-off of motor 2	P04.14 setting range: 0.0%: Automatic; 0.1%–10.0% P04.15 setting range: 0.0%–50.0% (of the rated frequency of motor 2)	20.0%	0
P04.16	V/F frequency point 1 of motor 2	Note: Refer to the descriptions for <u>P04.03</u> and <u>P04.08</u> .	0.00Hz	0
P04.17	V/F voltage point 1 of motor 2	<u>P04.16</u> setting range: 0.00Hz– <u>P04.18</u> <u>P04.17</u> setting range: 0.0%–110.0% (of the	00.0%	0
P04.18	V/F frequency point 2 of motor 2	rated voltage of motor 2) <u>P04.18</u> setting range: <u>P04.16</u> – <u>P04.20</u>	0.00Hz	0
P04.19	V/F voltage point 2 of motor 2	P04.19 setting range: 0.0%–110.0% (of the rated voltage of motor 2)	00.0%	0
P04.20	V/F frequency point 3 of motor 2	<u>P04.20</u> setting range: <u>P04.18</u> – <u>P12.02</u> (Rated frequency of AM 2) or <u>P04.18</u> – <u>P12.16</u> (Rated	0.00Hz	0
P04.21	V/F voltage point 3 of motor 2	frequency of SM 2) <u>P04.21</u> setting range: 0.0%–110.0% (of the rated voltage of motor 2)	00.0%	0
P04.22	V/F slip compensation gain of motor 2	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\Delta f = f_b - n^* p/60$ Of which, f_b is the rated frequency of the motor 2, corresponding to function code <u>P12.02</u> . n is the rated rotating speed of the motor 2, corresponding to function code <u>P12.03</u> . p is the number of pole pairs of the motor. 100.0% corresponds to the rated slip frequency Δf of motor 2. Setting range: 0.0–200.0%	0.0%	0
P04.23	Low-frequency oscillation control factor of motor 2	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain	10	0
P04.24	High-frequency oscillation control factor of motor 2	frequencies, which may cause unstable motor running, or even VFD overcurrent. You can adjust the two function codes properly to	10	0

Function code	Name	Description	Default	Modify
P04.25		eliminate such phenomenon. <u>P04.23</u> setting range: 0–100 <u>P04.24</u> setting range: 0–100 <u>P04.25</u> setting range: 0.00Hz– <u>P00.03</u> (Max. output frequency)	30.00Hz	0
P04.26	Energy-saving run	0: Disable 1: Automatic energy-saving run In light-load state, the motor can adjust the output voltage automatically to achieve energy saving.	0	O
P04.27	Voltage setting channel	0: Keypad (The output voltage is determined by P04.28.) 1: Al1 2: Al2 3: Al3 4: HDIA 5: Multi-step speed running (The setting is determined by group P10.) 6: PID 7: Modbus communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: HDIB 11: EtherCAT/Profinet communication 12: Programmable expansion card 13: 216 communication	0	0
P04.28	Voltage set through keypad	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0%–100.0%	100.0%	0
P04.29	Voltage increase time	Voltage increase time means the time needed for the VFD to accelerate from min. output	5.0s	0
P04.30	Voltage decrease time	voltage to the max. output frequency. Voltage decrease time means the time needed for the VFD to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0s	0

Function code	Name	Description	Default	Modify
P04.31	Max. output voltage	The function codes are used to set the upper and lower limits of output voltage.	100.0%	0
P04.32	Output min. voltage	Vmax V set Vmin <u>t1=P04.29</u> V set <u>t2=P04.30</u> <u>t2=P04.30</u> <u>t2=P04.31</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.32</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t3=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u> <u>t2=P04.33</u>	0.0%	0
P04.33	Weakening coefficient in constant power zone	1.00–1.30	1.00	0
P04.34	Pull-in current 1 in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by <u>P04.36</u> . Setting range: -100.0%-+100.0% (of the motor rated current)	20.0%	0
P04.35	Pull-in current 2 in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by <u>P04.36</u> . Setting range: -100.0%-+100.0% (of the motor rated current)	10.0%	0
P04.36	Frequency threshold for pull-in current switching in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.00Hz– <u>P00.03</u> (Max. output frequency)	50.00Hz	0
P04.37	Reactive current closed-loop proportional coefficient in SM	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control.	50	0

Function code	Name	Description	Default	Modify
	V/F control	Setting range: 0–3000		
P04.38	Reactive current closed-loop integral time in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control. Setting range: 0–3000	30	0
P04.39		When the SM VF control mode is enabled, the function code is used to set the output limit of the reactive current closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify the function code. Setting range: 0–16000	8000	0
P04.40	Enabling I/F mode for AM 1	0: Disable 1: Enable Note: The I/F mode is not applicable to conical motors.	0	O
P04.41	Forward current setting in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%	0
P04.42	Proportional coefficient in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the proportional coefficient of the output current in closed-loop control. Setting range: 0–5000	350	0
P04.43	Integral coefficient in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the integral coefficient of the output current in closed-loop control. Setting range: 0–5000	150	0
P04.44	for switching off	When I/F control is adopted for AM 1, this parameter is used to set the starting frequency for switching off the output current closed-loop control. When the output frequency is lower than the value of this parameter, the current	10.00Hz	0

Function code	Name	Description	Default	Modify
		closed-loop control in the I/F control mode is enabled; and when the output frequency is higher than P04.50, the current closed-loop control in the I/F control mode is disabled.		
P04.45	Enabling I/F mode for AM 2	0: Disable	0	O
P04.46	Forward current setting in I/F mode for AM 2	When I/F control is adopted for AM 2, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%	0
P04.47	Proportional coefficient in I/F mode for AM 2	When I/F control is adopted for AM 2, the function code is used to set the proportional coefficient of output current in closed-loop control. Setting range: 0–5000	350	0
P04.48		When I/F control is adopted for AM 2, the function code is used to set the integral coefficient of output current in closed-loop control. Setting range: 0–5000	150	0
P04.49	Starting frequency for switching off	When I/F control is adopted for AM 2, this parameter is used to set the starting frequency	10.00Hz	0

Function code	Name	Description	Default	Modify
	I/F mode for AM 2	for switching off the output current closed-loop		
		control. When the output frequency is lower than		
		the value of this parameter, the current		
		closed-loop control in the I/F control mode is		
		enabled; and when the output frequency is		
		higher than P04.51, the current closed-loop		
		control in the I/F control mode is disabled.		
		Setting range: 0.00–20.00 Hz		
	End frequency for			
P04.50	switching off I/F	P04.44–P00.03	25.00Hz	0
	mode for motor 1			
	End frequency for			
P04.51	switching off I/F	P04.49–P00.03	25.00Hz	0
	mode for motor 2			
	Reverse current			
P04.52	setting in I/F mode	0.0–200.0%	120.0%	0
	for AM 1			
	Reverse current			
P04.53	setting in I/F mode	0.0–200.0%	120.0%	0
	for AM 2			

P05 group-Input terminals

Function code	Name	Description	Default	Modify
P05.00	HDI input type	0x00–0x11 Ones place: HDIA input type 0: HDIA is high-speed pulse input 1: HDIA is digital input Tens place: HDIB input type 0: HDIB is high-speed pulse input 1: HDIB is digital input	0x00	0
P05.01	Function of S1	0: No function	1	O
P05.02	Function of S2	1: Run forward	2	O
P05.03	Function of S3	2: Run reversely	7	O
P05.04	Function of S4	3: Three-wire running control	0	O
P05.05	Function of HDIA	4: Jog forward	0	O
P05.06	Function of HDIB	5: Jog reversely	0	O
P05.07	Reserved	6: Coast to stop	0	O

Function code	Name	Description	Default	Modify
0000		7: Reset faults		
		8: Pause running		
		9: External fault input		
		10: Increase frequency setting (UP)		
		11: Decrease frequency setting (DOWN)		
		12: Clear the frequency increase/decrease		
		setting		
		13: Switch between A setting and B setting		
		14: Switch between combination setting and A		
		setting		
		15: Switch between combination setting and B		
		setting		
		16: Multi-step speed terminal 1		
		17: Multi-step speed terminal 2		
		18: Multi-step speed terminal 3		
		19: Multi-step speed terminal 4		
		20: Pause multi-step speed running		
		21: ACC/DEC time selection 1		
		22: ACC/DEC time selection 2		
		23: Simple PLC stop reset		
		24: Pause simple PLC		
		25: Pause PID control		
		26: Pause wobbling frequency		
		27: Reset wobbling frequency		
		28: Counter reset		
		29: Switch between speed control and torque		
		control		
		30: Disable ACC/DEC		
		31: Trigger the counter		
		32: Reserved		
		33: Clear the frequency increase/decrease		
		setting temporarily		
		34: DC braking		
		35: Switch from motor 1 to motor 2		
		36: Switch the running command channel to		
		keypad		
		37: Switch the running command channel to		
		terminal		

Function code	Name	Description	Default	Modify
		38: Switch the running command channel to		
		communication		
		39: Pre-exciting command		
		40: Clear electricity consumption		
		41: Keep electricity consumption		
		42: Switch the setting source of braking torque		
		upper limit to keypad		
		43: Position reference point input (only valid for		
		S1, S2 and S3)		
		44: Disable spindle orientation		
		45: Spindle zeroing / Local positioning zeroing		
		46: Spindle zeroing position selection 1		
		47: Spindle zeroing position selection 2		
		48: Spindle scale division selection 1		
		49: Spindle scale division selection 2		
		50: Spindle scale division selection 3		
		51: Terminal for switching between position		
		control and speed control		
		52: Disable pulse input		
		53: Clear position deviation		
		54: Switch position proportional gains		
		55: Enable cyclic digital positioning		
		56: Emergency stop		
		57: Motor overtemperature fault input		
		58: Enable rigid tapping		
		59: Switch to V/F control		
		60: Switch to FVC control		
		61: Switch PID polarities		
		62: Switch to SVC1 control (open-loop vector		
		control 1)		
		63: Enable servo		
		64: Limit of forward run (upward)		
		65: Limit of reverse run (downward)		
		66: Clear encoder counting		
		67: Increase pulses		
		68: Enable pulse superposition		
		69: Decrease pulses		
		70: Electronic gear selection		

71: Switch to the master 72: Switch to the slave 73: Enable the VFD 74: Contactor feedback signal 75: Brake feedback signal 76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals.	Function	Name	Description	Default	Modify
72: Switch to the slave 73: Enable the VFD 74: Contactor feedback signal 75: Brake feedback signal 76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;	code		·		
73: Enable the VFD 74: Contactor feedback signal 75: Brake feedback signal 76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;					
74: Contactor feedback signal 75: Brake feedback signal 76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000					
75: Brake feedback signal 76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000			73: Enable the VFD		
76: Operating lever zero-point position 77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;			74: Contactor feedback signal		
77: Graded reference terminal 1 78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;			75: Brake feedback signal		
78: Graded reference terminal 2 79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;			76: Operating lever zero-point position		
79: Graded reference terminal 3 80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			77: Graded reference terminal 1		
80: Graded reference terminal 4 81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;			78: Graded reference terminal 2		
81: Graded reference terminal 5 82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			79: Graded reference terminal 3		
82: Upward DEC limit position 83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			80: Graded reference terminal 4		
83: Downward DEC limit position 84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive;			81: Graded reference terminal 5		
84: Light load speed boost signal 85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000			82: Upward DEC limit position		
85: Brake detection 86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			83: Downward DEC limit position		
86: PTC overtemperature valid signal (supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			84: Light load speed boost signal		
(supporting only S8 of EC-IO502-00) 87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			85: Brake detection		
87: Reset the position synchronization pulse counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000			86: PTC overtemperature valid signal		
counting 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000			(supporting only S8 of EC-IO502-00)		
88: Switch from motor 1 to motor 3 88: Switch from motor 1 to motor 3 89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. When a bit is 0, the input terminal is positive; 0x000			87: Reset the position synchronization pulse		
89: Anti-snag protection input 90: Enable anti-sway Used to set the polarity of input terminals. P05.08			counting		
90: Enable anti-sway Used to set the polarity of input terminals. P05.08 Input terminal When a bit is 0, the input terminal is positive; 0x000 C			88: Switch from motor 1 to motor 3		
Used to set the polarity of input terminals. P05.08 Input terminal When a bit is 0, the input terminal is positive; 0x000			89: Anti-snag protection input		
P05.08 Input terminal When a bit is 0, the input terminal is positive;			90: Enable anti-sway		
[P05.08] [0x000] C			Used to set the polarity of input terminals.		
P05.08 polarity when a bit is 1, the input terminal is negative.		-	When a bit is 0, the input terminal is positive;		0
	P05.08		when a bit is 1, the input terminal is negative.	0x000	
0x000–0x3F			0x000–0x3F		
The function code is used to set the filter time for		Digital input filter time	The function code is used to set the filter time for		
Digital input filter S1–S4, HDIA, and HDIB. In strong interference	P05.09		S1–S4, HDIA, and HDIB. In strong interference		_
[P05.09] 0.010s C			-	0.010s	0
0.000–1.000s					
0x000–0x3F (0: Disable. 1: Enable)	P05.10	Virtual terminal setting			O
BIT0: S1 virtual terminal					
BIT1: S2 virtual terminal					
Virtual terminal				0x00	
				0.00	
BIT4: HDIA virtual terminal					
BIT5: HDIB virtual terminal					
	P05 11	Terminal control	0	Ø	

Function code	Name	Description				Default	Modify
	mode	0: Two-wire control 1, the enabling consistent					
		with the direction. This mode is widely used. The					
		defined FWD/REV term					
		determines the motor ro					
		FWD	FWD	REV	Running command		
		K1	OFF	OFF	Stop		
		REV	ON	OFF	Forward running		
		сом	OFF	ON	Reverse running		
			ON	ON	Hold		
		1: Two-wire control 2, th					
		from the direction. In th					
		enabling terminal. The					
		defined REV state.					
		FWD REV Running command					
		К1					
		REV	ON	OFF	Forward running		
		COM OFF ON Stop ON ON Reverse running					
		2: Three-wire control 1.					
		as the enabling termina					
		command is generated					
		direction is controlled by					
		the Sin terminal needs					
		terminal FWD generates a rising edge signal, then the VFD starts to run in the direction set by					
		the state of terminal REV; the VFD needs to be					
		stopped by disconnecting					

Function code	Name	Description				Default	Modify
		SB2	FWD SIn REV COM	is as follows	during		
		Sin	REV	Previous direction	Present direction		
		ON	OFF→ON	FWD run REV run	REV run FWD run		
		ON	ON→OFF	REV run FWD run	FWD run REV run		
		ON→ OFF	ON OFF	Decelerate t			
		REV: Reve	erse runnin	g	ward running;		
		as the ena command direction is	vire control abling termi is generate s controlled				
		closed, an rising edge	ning, the S d terminal e signal to o f the VED:				
				the VFD nee			

Function code	Name	Description				Default	Modify
		Sin	FWD	REV	Running direction		
		ON	OFF→ON	ON OFF	FWD run FWD run		
		ON	ON	OFF→ON	REV run		
			OFF		REV run DEC to		
		ON→OFF Sin: Three-w	ire control;	FWD: Forwa	stop ard running;		
		REV: Revers Note: For tw	Ũ	trolled run	ning mode.		
		when the FV VFD stops d	VD/REV ter	minal is va	lid, if the		
		another sou	rce, the VF	D does not	t run again		
		after the sto	erminal FV	VD/REV is s	still valid.		
		To make the FWD/REV ag	gain, for ex	ample, PL	0		
		single-cycle valid STOP/	• •	•	• •		
		(See <u>P07.04</u> .	.)				
P05.12	S1 switch-on delay	Used to spec	ify the dela	y time corre	esponding to	0.000s	0
P05.13	S1 switch-off delay	the electrical programmab				0.000s	0
P05.14	S2 switch-on delay	switch off. Si electrical	level			0.000s	0
P05.15	S2 switch-off delay		valid Switch-on	valio Switc	h-off	0.000s	0
P05.16	S3 switch-on delay	Setting range	delay	dela		0.000s	0
P05.17	S3 switch-off delay	Note: After a state of the				0.000s	0
P05.18	S4 switch-on delay	communicat address is 0	tion mode.			0.000s	0
P05.19	S4 switch-off					0.000s	0

Function code	Name	Description	Default	Modify
	delay			
P05.20	HDIA switch-on		0.000s	0
P05.20	delay		0.0005	0
P05.21	HDIA switch-off		0.000s	0
F03.21	delay		0.0005	0
P05.22	HDIB switch-on		0.000s	0
1 05.22	delay		0.0003	0
P05.23	HDIB switch-off		0.000s	0
1 00.20	delay		0.0003	0
P05.24	AI1 lower limit	Used to define the relationship between the	0.00V	0
	Corresponding	analog input voltage and its corresponding		
P05.25	setting of AI1	setting. When the analog input voltage exceeds	0.0%	0
	lower limit	the range from the upper limit to the lower limit,		
P05.26	AI1 upper limit	the upper limit or lower limit is used.	10.00V	0
	Corresponding	When the analog input is current input,		
P05.27	setting of AI1	0mA–20mA current corresponds to 0V–10V	100.0%	0
	upper limit	voltage.		
P05.28	Al1 input filter	In different applications, 100.0% of the analog	0.030s	0
1 00.20	time	setting corresponds to different nominal values.	0.0003	Ŭ
P05.29	AI2 lower limit	See the descriptions of each application section	-10.00V	0
	Corresponding	for details.		
P05.30	setting of AI2	The following figure illustrates the cases of	-100.0%	0
	lower limit	several settings:		
P05.31	AI2 middle value 1	Corresponding setting	0.00V	0
	Corresponding			
P05.32	setting of AI2		0.0%	0
	middle value 1			
P05.33	AI2 middle value 2	20mA	0.00V	0
	Corresponding	AI2 AI1		
P05.34	setting of AI2	-100%	0.0%	0
	middle value 2			
P05.35	AI2 upper limit	Input filter time: to adjust the sensitivity of analog	10.00V	0
	Corresponding	input. Increasing the value properly can		
P05.36	setting of AI2	enhance analog input anti-interference but may	100.0%	0
	upper limit	reduce the sensitivity of analog input.		
P05.37	Al2 input filter	Note: Al1 supports the 0–10V/0–20mA input.	0.030s	0
1 00.07	time	When Al1 selects the 0-20mA input, the	0.0003	<u> </u>

Function code	Name	Description	Default	Modify
coue		corresponding voltage of 20mA is 10V. Al2		
		supports the -10-+10V input.		
		P05.24 setting range: 0.00V–P05.26		
		P05.25 setting range: -300.0% –300.0%		
		P05.26 setting range: P05.24–10.00V		
		P05.27 setting range: -300.0% –300.0%		
		P05.28 setting range: 0.000s-10.000s		
		P05.29 setting range: -10.00V–P05.31		
		P05.30 setting range: -300.0% –300.0%		
		P05.31 setting range: P05.29–P05.33		
		P05.32 setting range: -300.0% –300.0%		
		<u>P05.33</u> setting range: <u>P05.31–P05.35</u>		
		P05.34 setting range: -300.0% –300.0%		
		P05.35 setting range: P05.33-10.00V		
		P05.36 setting range: -300.0% –300.0%		
		Setting range of <u>P05.37</u> : 0.000s–10.000s		
		0: Input set through frequency		
	HDIA high-speed pulse input function selection	1: Reserved		
P05.38		2: Input set through encoder, used together with	0	O
		HDIB		
	HDIA lower limit		0.000	
P05.39	frequency	0.000 kHz– <u>P05.41</u>	kHz	0
	Corresponding			
	setting of HDIA			
P05.40	lower limit	-300.0%–300.0%	0.0%	0
	frequency			
	HDIA upper limit		50.000	
P05.41	frequency	<u>P05.39</u> –50.000kHz	kHz	0
	Corresponding			
	setting of HDIA			
P05.42	upper limit	-300.0%–300.0%	100.0%	0
	frequency			
	HDIA frequency			
P05.43	input filter time	0.000s–10.000s	0.030s	0
	HDIB high-speed	0: Input set through frequency		
P05.44	pulse input	1: Reserved	0	O
		2: Input set through encoder, used with HDIA		

Function code	Name	Description	Default	Modify
P05.45	HDIB lower limit frequency	0.000 kHz – <u>P05.47</u>	0.000 kHz	0
P05.46	Corresponding setting of HDIB lower limit frequency	-300.0%–300.0%	0.0%	0
P05.47	HDIB upper limit frequency	<u>P05.45</u> –50.000kHz	50.000 kHz	0
P05.48	Corresponding setting of HDIB upper limit frequency	-300.0%–300.0%	100.0%	0
P05.49	HDIB frequency input filter time	0.000s–10.000s	0.030s	0
P05.50	Al1 input signal type	0: Voltage 1: Current Note: You can set the Al1 input signal type through the corresponding function code.	0	0

P06 group—Output terminals

Function code	Name	Description	Default	Modify
P06.00	HDO output type	 Open collector high-speed pulse output. The max. frequency of pulse is 50.00kHz. For details about the related functions, see <u>P06.27–P06.31</u>. Open collector output. For details about the 	0	O
		related functions, see <u>P06.02</u> .		
P06.01	Y1 output	0: Disable	0	0
P06.02	HDO output	1: Running	0	0
P06.03	RO1 output	2: Running forward	1	0
P06.04	RO2 output	 3: Running reversely 4: Jogging 5: VFD in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Running in zero speed 10: Upper limit frequency reached 	5	0

Function	Name	Description	Default	Modify
code		11: Lower limit frequency reached		
		12: Ready for running		
		13: Pre-exciting		
		14: Overload pre-alarm		
		15: Underload pre-alarm		
		16: Simple PLC stage completed		
		17: Simple PLC cycle completed		
		18: Set counting value reached		
		19: Designated counting value reached		
		20: External fault is valid		
		21: Reserved		
		22: Running time reached		
		23: MODBUS communication virtual terminal		
		output		
		24: PROFIBUS/CANopen/DeviceNet		
		communication virtual terminal output		
		25: Ethernet communication virtual terminal		
		output		
		26: DC bus voltage established		
		27: Z pulse output		
		28: Superposing pulses		
		29: STO action		
		30: Positioning completed		
		31: Spindle zeroing completed		
		32: Spindle scale division completed		
		33: In speed limit		
		34: EtherCAT/Profinet communication virtual		
		terminal output		
		35: Reserved		
		36: Speed/position control switchover completed		
		37: Any frequency reached		
		38–40: Reserved		
		41: C_Y1 from PLC (Set P27.00 to 1.)		
		42: C_Y2 from PLC (Set P27.00 to 1.)		
		43: C_HDO from PLC (Set P27.00 to 1.)		
		44: C_RO1 from PLC (Set P27.00 to 1.)		
		45: C_RO2 from PLC (Set P27.00 to 1.)		
		46: C_RO3 from PLC (Set P27.00 to 1.)		

Function code	Name		Descr	iption		Default	Modify
		47: C_RO4	from PLC (S	Set P27.00 to	o 1.)		
		48: Contacto	or output				
		50: Brake ou	utput				
		50: Ready to	release the	e brake			
		51: Ready to	close the b	orake			
		52: The upw	ard limit pos	sition is read	hed.		
		53: The dow	nward limit	position is re	eached.		
		54: Low volt	age protecti	on			
		55: Overload	d protection				
		56: Brake de	etection rem	inding			
		57: Brake fa	ilure alarm				
		58: Input ph	ase loss ala	rm			
		59: Loose ro	pe status (F	WD loose r	ope		
		protection, F	REV loose ro	ope alarm or	fault)		
		60: In motor	1 state				
		61: In motor	2 state				
		62: In motor	3 state				
		63: PT100 te	emperature	alarm			
		64: PT1000	temperature	e alarm			
		65: Boosting	the speed	with light loa	ad		
		66: Frequen	cy decrease	e with voltag	е		
		67: Weighing	g alarm				
		68: AI detect	ted tempera	ture alarm			
		69: 216 com	munication	virtual termi	nal output		
		Used to set	the polarity	of output ter	minals.		
		When a bit is	s 0, the inpu	it terminal is	positive;		
P06.05	Output terminal	when a bit is	1, the input	t terminal is	negative.	00	0
1 00.00	polarity selection	BIT3	BIT2	BIT1	BIT0	00	Ŭ
		RO2	RO1	HDO	Y		
		Setting rang	e: 0x0 –0xF				
P06.06	Y1 switch-on					0.000s	0
F00.00	delay		مثاحب واملم	where come	an an dia a ta	0.0005	0
P06.07	Y1 switch-off	Used to spe	•	•		0.000s	0
PU0.07	delay	the electrica		-		0.0005	0
P06.08	HDO switch-on	programmat	ne output te	minals swit		0.0000	
200.08	delay	SWITCH OIL				0.000s	0
P06.09	HDO switch-off					0.000s	0

Function code	Name	Description	Default	Modify
	delay	Y electric level		
P06.10	RO1 switch-on delay	Y valid invalid invalid Y valid /// Valid ////////////////////////////////////	0.000s	0
P06.11	RO1 switch-off delay	Setting range: 0.000–50.000s	0.000s	0
P06.12	RO2 switch-on delay	Note: <u>P06.08</u> and <u>P06.09</u> are valid only when <u>P06.00</u> =1.	0.000s	0
P06.13	RO2 switch-off delay		0.000s	0
P06.14	AO1 output	0: Running frequency (0–Max. output frequency)	0	0
P06.16	HDO high-speed pulse output	 1: Set frequency (0-Max. output frequency) 1: Set frequency (0-Max. output frequency) 2: Ramp reference frequency (0-Max. output frequency) 3: Rotational speed (0-Speed corresponding to max. output frequency) 4: Output (0-Twice the inverter unit rated current) 5: Output current (0-Twice the motor rated current) 6: Output (0-1.5 times the inverter unit rated voltage) 7: Output power (0-Twice the motor rated torque) 9: Output torque (Actual 0-Twice the motor rated torque) 9: Output torque (Actual 0-Twice the motor rated torque) 10: Al1 input (0-10V/0-20mA) 11: Al2 input (0-10V/ 12: Al3 input (0-10V/ 13: HDIA input (0.00-50.00kHz) 14: Value 1 set through Modbus communication (0-1000) 15: Value 2 set through PROFIBUS/CANopen/DeviceNet communication (0-1000) 17: Value 2 set through 	0	0

Function code	Name	Description	Default	Modify
		PROFIBUS/CANopen/DeviceNet		
		communication (0–1000)		
		18: Value 1 set through Ethernet communication		
		(0–1000)		
		19: Value 2 set through Ethernet communication		
		(0–1000)		
		20: HDIB input (0.00–50.00kHz)		
		21: Value 1 set through EtherCAT/PROFINET		
		communication (0–1000)		
		22: Torque current (0–Triple the motor rated		
		current)		
		23: Exciting current (0–Triple the motor rated		
		current)		
		24: Set frequency (bipolar, 0–Max. output		
		frequency)		
		25: Ramp reference frequency (bipolar, 0–Max.		
		output frequency)		
		26: Rotational speed (bipolar, 0–Speed		
		corresponding to max. output frequency)		
		27: Value 2 set through EtherCAT/PROFINET		
		communication (0–1000)		
		28: C_AO1 from PLC (Set P27.00 to 1) (0–1000)		
		29: C_AO2 from PLC (Set P27.00 to 1) (0–1000)		
		30: Rotational speed (0–Twice the motor rated		
		synchronous speed)		
		31: Output torque (Actual value, 0-Twice the		
		motor rated torque)		
		32: Temperature measured by resistor		
		33: Value 1 set through 216 communication		
		34: Value 2 set through 216 communication		
P06.17	AO1 output lower	Used to define the relationship between the	0.0%	0
PU0.17	limit	output value and analog output. When the	0.0%	0
	AO1 output	output value exceeds the allowed range, the		
P06.18	corresponding to	output uses the lower limit or upper limit.	0.00V	0
	lower limit	When the analog output is current output, 1mA		
D00.40	AO1 output upper	equals 0.5V.	100.000	
P06.19	limit	In different cases, the corresponding analog	100.0%	0
P06.20	AO1 output	output of 100% of the output value is different.	10.00V	0

Function code	Name	Description	Default	Modify
	corresponding to	AO 10V (20mA)		
	upper limit			
P06.21	AO1 output filter time	Setting range of <u>P06.17</u> : -300.0%- <u>P06.19</u> <u>P06.18</u> setting range: 0.00V-10.00V <u>P06.20</u> setting range: 0.00V-10.00V <u>P06.21</u> setting range: 0.00V-10.00V <u>P06.21</u> setting range: 0.000s-10.000s	0.000s	0
P06.27	HDO output lower limit	-300.0%- <u>P06.29</u>	0.00%	0
P06.28	HDO output corresponding to lower limit	0.00–50.00Hz	0.00kHz	0
P06.29	HDO output upper limit	<u>P06.27</u> –100.0%	100.0%	0
P06.30	HDO output corresponding to upper limit	0.00–50.00Hz	50.00 kHz	0
P06.31	HDO output filter time	0.000s–10.000s	0.000s	0
P06.33	Detection value for frequency being reached	0–P00.03	1.00Hz	0
P06.34	Frequency reaching detection time	0–3600.0s	0.5s	0

P07 group---Human-machine interface

Function code	Name	Description	Default	Modify
P07.00	User password	0–65535 When you set the function code to a non-zero number, password protection is enabled. If you set the function code to 00000, the previous user password is cleared and	0	0

Function	Name	Description	Default	Modify
code	Hume	Description	Delaun	moany
		password protection is disabled.		
		After the user password is set and takes effect,		
		you cannot enter the parameter menu if you		
		enter an incorrect password. Please remember		
		your password and save it in a secure place.		
		After you exit the function code editing interface,		
		the password protection function is enabled		
		within 1 minute. If password protection is		
		enabled, "[].[].[].[].[]" is displayed when you		
		press the PRG/ESC key again to enter the		
		function code editing interface. You need to		
		enter the correct user password to enter the		
		interface.		
		Note: Restoring the default values may		
		delete the user password. Exercise caution		
		when using this function.		
		Range: 0–4		
		0: No operation		
	Parameter copy	1: Upload parameters to the keypad		
P07.01		2: Download all parameters (including motor	0	O
		parameters)		
		3: Download non-motor parameters		
		4: Download motor parameters		
		Range: 0x00–0x27		
		Ones place: Function of QUICK/JOG		
		0: No function		
		1: Jog		
	Kaufunatian	2: Reserved		
P07.02	Key function	3: Switch between forward and reverse rotating	0x01	O
	selection	4: Clear the UP/DOWN setting		
		5: Coast to stop		
		6: Switch command channels in sequence		
		7: Reserved		
		Tens place: Reserved		
	Sequence of	When P07.02=6, set the sequence of switching		
D07.00	switching	running-command channels by pressing this	0	
P07.03	running-command	key.	0	0
	channels by	0: Keypad→Terminal→Communication		

Function code	Name	Description	Default	Modify
	pressing QUICK	1: Keypad←→Terminal		
		2: Keypad←→Communication		
		3: Terminal←→Communication		
P07.04	Stop function validity of STOP/RST	Used to specify the stop function validity of <u>STOP/RST</u> . For fault reset, <u>STOP/RST</u> is valid in any conditions. 0: Valid only for keypad control 1: Valid both for keypad and terminal control 2: Valid both for keypad and communication control 3: Valid for all control modes	0	0
	Selection 1 of			
P07.05	parameters displayed in running state	0x0000-0xFFFF	0x03FF	
	Selection 2 of			
P07.06	parameters displayed in running state	0x0000-0xFFFF	0x0000	
P07.07	Selection of parameters displayed in stopped state	0x0000–0xFFFF	0x00FF	
P07.08	Frequency display coefficient	0.01–10.00 Display frequency = Running frequency * P07.08	1.00	0
P07.09	Rotational speed display coefficient	0.1–999.9% Mechanical rotation speed = 120 * (Displayed running frequency) * <u>P07.09</u> /(Motor pole pairs)	100.0%	0
P07.10	Linear speed display coefficient	0.1–999.9% Linear speed=(Mechanical rotation speed) * P07.10	1.0%	0
P07.11	Rectifier bridge temperature	-20.0°C–120.0°C		•
P07.12	Inverter temperature	-20.0°C–120.0°C		•
P07.13	Control board	1.00–655.35		•

Function code	Name	Description	Default	Modify
coue	software version			
	Local			
P07.14	accumulative	0–65535h		•
	running time			
	VFD electricity	Used to display the electricity consumption of		
P07.15	consumption	the VFD.		•
	high-order bits	VFD electricity consumption = $P07.15*1000 +$		
	VFD electricity	<u>P07.16</u>		
P07.16	consumption	P07.15 setting range: 0–65535 kWh (*1000)		•
	low-order bits	P07.16 setting range: 0.0–999.9 kWh		
P07.17	Reserved	Reserved		
P07.18	VFD rated power	0.4–3000.0kW		•
P07.19	VFD rated voltage	50–1200V		•
P07.20	VFD rated current	0.1–6000.0A		•
P07.21	Factory bar code 1	0x0000–0xFFFF		•
P07.22	Factory bar code 2	0x0000-0xFFFF		•
P07.23	Factory bar code 3	0x0000-0xFFFF		•
P07.24	Factory bar code 4	0x0000-0xFFFF		•
P07.25	Factory bar code 3	0x0000–0xFFFF		•
P07.26	Factory bar code 4	0x0000-0xFFFF		•
P07.27	Type of present fault	0: No fault 1: Inverter unit U-phase protection (OUt1)		•
P07.28	Last fault type	2: Inverter unit V-phase protection (OUt2)		•
P07.29	2nd-last fault type	3: Inverter unit W-phase protection (OUt3)		•
P07.30	3rd-last fault type	4: Overcurrent during acceleration (OC1)		•
P07.31	4th-last fault type	5: Overcurrent during deceleration (OC2)		•
		6: Overcurrent during constant speed running (OC3)		
P07.32	5th-last fault type	 7: Overvoltage during acceleration (OV1) 8: Overvoltage during deceleration (OV2) 9: Overvoltage during constant speed running 		•

Function code	Name	Description	Default	Modify
coue		(OV3)		
		10: Bus undervoltage fault (UV)		
		11: Motor overload (OL1)		
		12: VFD overload (OL2)		
		13: Phase loss on input side (SPI)		
		14: Phase loss on output side (SPO)		
		15: Rectifier module overheat (OH1)		
		16: Inverter module overheat (OH2)		
		17: External fault (EF)		
		18: RS485 communication fault (CE)		
		19: Current detection fault (ItE)		
		20: Motor autotuning fault (tE)		
		21: EEPROM operation error (EEP)		
		22: PID feedback offline fault (PIDE)		
		23: Braking unit fault (bCE)		
		24: Running time reached (END)		
		25: Electronic overload (OL3)		
		26: Keypad communication error (PCE)		
		27: Parameter upload error (UPE)		
		28: Parameter download error (DNE)		
		29: Profibus communication fault (E_dP)		
		30: Ethernet communication fault (E_NET)		
		31: CANopen communication fault (E-CAN)		
		32: To-ground short-circuit fault 1 (ETH1)		
		33: To-ground short-circuit fault 2 (ETH2)		
		34: Speed deviation fault (dEu)		
		35: Mal-adjustment fault (STo)		
		36: Underload fault (LL)		
		37: Encoder disconnection fault (ENC1O)		
		38: Encoder direction reversal fault (ENC1D)		
		39: Encoder Z-pulse disconnection fault		
		(ENC1Z)		
		40: Safe torque off (STO)		
		41: Channel 1 safety circuit exception (STL1)		
		42: Channel 2 safety circuit exception (STL2)		
		43: Exception in both channels 1 and 2 (STL3)		
		44: Safety code FLASH CRC fault (CrCE)		
		45: PLC card customized fault 1 (P-E1)		

Function code	Name	Description	Default	Modify
		46: PLC card customized fault 2 (P-E2)		
		47: PLC card customized fault 3 (P-E3)		
		48: PLC card customized fault 4 (P-E4)		
		49: PLC card customized fault 5 (P-E5)		
		50: PLC card customized fault 6 (P-E6)		
		51: PLC card customized fault 7 (P-E7)		
		52: PLC card customized fault 8 (P-E8)		
		53: PLC card customized fault 9 (P-E9)		
		54: PLC card customized fault 10 (P-E10)		
		55: Duplicate expansion card type (E-Err)		
		56: Encoder UVW lost (ENCUV)		
		57: Profinet communication fault (E_PN)		
		58: CAN communication fault (SECAN)		
		59: Motor overtemperature fault (OT)		
		60: Failure to identify the card at slot 1 (F1-Er)		
		61: Failure to identify the card at slot 2 (F2-Er)		
		62: Failure to identify the card at slot 3 (F3-Er)		
		63: Communication timeout of the card at slot 1		
		(C1-Er)		
		64: Communication timeout of the card at slot 2		
		(C2-Er)		
		65: Communication timeout of the card at slot 3		
		(C3-Er)		
		66: EtherCat communication fault (E-CAT)		
		67: Bacnet communication fault (E-BAC)		
		68: DeviceNet communication fault (E-DEV)		
		69: CAN slave fault in master/slave		
		synchronization (S-Err)		
		70: VFD disabled (dIS)		
		71: Contactor feedback fault (tbE)		
		72: Brake feedback fault (FAE)		
		73: Torque verification fault (tPF)		
		74: Operating lever zero-position fault (STC)		
		75: Low speed running protection fault (LSP)		
		76: Terminal command exception (tCE)		
		77: Power-on terminal command exception		
		(POE)		
		78: Loose rope protection fault (SLE)		

Function code	Name	Description	Default	Modify
code		79: Brake failure (bE)		
		80: Master/slave position synchronization fault		
		(ELS)		
		81: Analog speed reference deviation fault		
		(AdE)		
		82: PT100 overtemperature (OtE1)		
		83: PT1000 overtemperature (OtE2)		
		84: Set frequency fault (SFE)		
		85: Current imbalance fault (Cuu)		
		86: PTC overtemperature fault (PtcE)		
		87: Overload fault (E-OvL)		
		88: Overspeed fault (E-OS)		
		89: Stalling fault (E-dS)		
		90: 216 communication disconnection fault		
		(E-216)		
		91: External fault received by 216		
		communication card (216EF)		
	Running			
P07.33	frequency at		0.00Hz	•
	present fault			
	Ramp reference			
P07.34	frequency at		0.00Hz	•
	present fault			
P07.35	Output current at		0V	•
	present fault		-	
P07.36	Output current at		0.0A	•
	present fault			
P07.37	Bus voltage at		0.0V	•
	present fault			
P07.38	Temperature at		0.0°C	•
	present fault			
	Input terminal			
P07.39	status at present		0	
	fault			
	Output terminal		-	
P07.40	status at present		0	
	fault			

Function code	Name	Description	Default	Modify
P07.41	Running frequency at last fault		0.00Hz	•
P07.42	Ramp reference frequency at last fault		0.00Hz	•
P07.43	Output voltage at last fault		0V	•
P07.44	Output current at last fault		0.0A	•
P07.45	Bus voltage at last fault		0.0V	•
P07.46	Temperature at last fault	-20.0°C–120.0°C	0.0°C	•
P07.47	Input terminal status at last fault		0	•
P07.48	Output terminal status at last fault		0	•
P07.49	Running frequency at 2nd-last fault		0.00Hz	•
P07.50	Ramp reference frequency at 2nd-last fault		0.00Hz	•
P07.51	Output voltage at 2nd-last fault		0V	•
P07.52	Output current at 2nd-last fault		0.0A	•
P07.53	Bus voltage at 2nd-last fault		0.0V	•
P07.54	Temperature at 2nd-last fault	-20.0°C–120.0°C	0.0°C	•
P07.55	Input terminal status at 2nd-last fault		0	•
P07.56	Output terminal status at 2nd-last fault		0	•

P08 group--Enhanced functions

Function code	Name	Description	Default	Modify
P08.00	ACC time 2		Model depended	0
P08.01	DEC time 2	For details, see <u>P00.11</u> and <u>P00.12</u> .	Model depended	0
P08.02	ACC time 3	The VFD has four groups of ACC/DEC time, which can be selected by P05. The factory	Model depended	0
P08.03	DEC time 3	default ACC/DEC time of the VFD is the first group.	Model depended	0
P08.04	ACC time 4	Setting range: 0.0–3600.0s	Model depended	0
P08.05	DEC time 4		Model depended	0
P08.06	Running frequency of jog	The function code is used to define the reference frequency during jogging. Setting range: 0.00Hz– <u>P00.03</u> (Max. output frequency)	5.00Hz	0
P08.07	ACC time for jogging	ACC time for jogging means the time needed for the VFD to accelerate from 0Hz to the max.	Model depended	0
P08.08	DEC time for jogging	output frequency (<u>P00.03</u>). DEC time for jogging means the time needed for the VFD to decelerate from the max. output frequency (<u>P00.03</u>) to 0Hz. Setting range: 0.0–3600.0s	Model depended	0
P08.09	Jump frequency 1		0.00Hz	0
P08.10	Jump frequency amplitude 1	When the set frequency is within the range of jump frequency, the VFD runs at the boundary	0.00Hz	0
P08.11	Jump frequency 2	of jump frequency. The VFD can avoid mechanical resonance	0.00Hz	0
P08.12	Jump frequency amplitude 2	points by setting jump frequencies. The VFD supports the setting of three jump frequencies. If	0.00Hz	0
P08.13	Jump frequency 3	the jump frequency points are set to 0, this	0.00Hz	0
P08.14	Jump frequency amplitude 3	function is invalid.	0.00Hz	0

Function code	Name	Description	Default	Modify
		Set frequency f Jump frequency 3 Jump frequency 1 Jump frequency 1 Jump Set frequency 2 Jump frequency 1 Jump frequency 2 Jump frequency 1 Jump frequency 1 Jump frequ		
P08.15	Amplitude of wobbling frequency	0.0–100.0% (of the set frequency)	0.0%	0
P08.16	Amplitude of sudden jump frequency	0.0–50.0% (of the amplitude of wobbling frequency)	0.0%	0
P08.17	Rise time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.18	Fall time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.19	Switching frequency of ACC/DEC time	0.00– <u>P00.03</u> (Max. output frequency) 0.00Hz: No switchover If the running frequency is greater than <u>P08.19</u> , switch to ACC/DEC time 2.	0.00Hz	0
P08.20	Frequency threshold of the start of droop control	0.00–50.00Hz	2.00Hz	0
P08.21	Reference frequency of ACC/DEC time	0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid only for straight-line ACC/DEC	0	0
P08.22	Output torque calculation method	0: Based on torque current 1: Based on output power	0	0
P08.23	Number of	0: Two	0	0

Function code	Name	Description	Default	Modify
	decimal points of frequency	1: One		
P08.24	Number of decimal points of linear speed	0: No decimal point 1: One 2: Two 3: Three	0	0
P08.25	Set counting value	P08.26-65535	0	0
P08.26	Designated counting value	0– <u>P08.25</u>	0	0
P08.27	Set running time	0–65535min	0min	0
P08.28	Auto fault reset count	Auto fault reset count: When the VFD uses automatic fault reset, it is used to set the number	0	0
P08.29	Auto fault reset interval	of automatic fault reset times. When the number of continuous reset times exceeds the value, the VFD reports a fault and stops. Auto fault reset interval: Time interval from when a fault occurred to when automatic fault reset takes effect. After VFD starts, If no fault occurred within 600s after the VFD starts, the number of automatic fault reset times is cleared. <u>P08.28</u> setting range: 0–10 <u>P08.29</u> setting range: 0.1–3600.0s	1.0s	0
P08.30	Frequency decrease ratio in drop control	The output frequency of the VFD changes as the load changes. The function code is mainly used to balance the power when several motors drive a same load. Setting range: 0.00–50.00Hz	0.00Hz	0
P08.31	Channel for switching between motor 1 and motor 2	0x00–0x14 Ones place: Switchover channel 0: Terminal 1: Modbus communication 2: PROFIBUS/CANopen/DeviceNet communication 3: Ethernet communication 4: EtherCAT/Profinet communication 5: 216 communication	0x00	O

Function code	Name	Description	Default	Modify
		Tens place: indicates whether to enable switchover during running 0: Disable 1: Enable		
P08.32	FDT1 electrical level detection value	When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal	50.00Hz	0
P08.33	FDT1 lagging detection value	continuously outputs the signal of "Frequency level detection FDT". The signal is invalid only	5.0%	0
P08.34	FDT2 electrical level detection value	when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value).	50.00Hz	0
P08.35	FDT2 lagging detection value	P08.32 setting range: 0.00Hz-P00.03 (Max. output frequency) P08.34 setting range: 0.00Hz-P00.03 (Max. output frequency) P08.35 setting range: 0.0-100.0% (FDT1 electrical level) P08.35 setting range: 0.0-100.0% (FDT2 electrical level)	5.0%	0
P08.36	Detection value for frequency being reached	When the output frequency is within the detection range, the multifunction digital output terminal outputs the signal of "Frequency reached".	0.00Hz	0

Function code	Name	Description	Default	Modify
		Setting range: 0.00Hz- <u>P00.03</u> (Max. output frequency)		
P08.37	Enabling energy-consumpti on braking	0x00–0x11 Ones place: 0: Disable 1: Enable Tens place: 0: Disable braking short-circuit protection 1: Enable braking short-circuit protection Braking short-circuit protection is disabled for 22kW and lower VFD models by default.	0x01	0
P08.38	Energy- consumption braking threshold voltage	The function code is used to set the starting bus voltage of energy consumption braking. Adjust this value properly to achieve effective braking for the load. The default value varies depending on the voltage class. Setting range: 200.0–2000.0V	For 220V: 380.0V For 380V: 700.0V For 660V: 1120.0V	0
P08.39	Cooling-fan running mode	0: The fan runs with the VFD; the fan stops 1 minute after the VFD stops. 1: Permanent running after power-on 2: Run mode 2	0	0
P08.40	PWM selection	0x0000–0x1121 Ones place: PWM mode selection 0: PWM mode 1, 3PH modulation and 2PH modulation 1: PWM mode 2, 3PH modulation Tens place: PWM low-speed carrier frequency limit	0x1101	O

Function code	Name	Description	Default	Modify
		0: Low-speed carrier frequency limit mode 1		
		1: Low-speed carrier frequency limit mode 2		
		2: No limit on low-speed carrier frequency		
		Hundreds place: Deadzone compensation		
		method		
		0: Compensation method 1		
		1: Compensation method 2		
		Thousands place: PWM loading mode selection		
		0: Interruptive loading		
		1: Normal loading		
		0x00–0x1111		
		Ones place:		
		0: Disable		
		1: Enable		
		Tens place		
		0: Mild overmodulation		
P08.41	Overmodulation	1: Deepened overmodulation	0x0001	O
	selection	Hundreds: Carrier frequency limit		
		0:Yes		
		1:No		
		Thousands: Output voltage compensation		
		0: No		
		1: Yes		
P08.42	Reserved	000–1223	0x0003	0
P08.43	Reserved	0.01–10.00	0.10s	0
		0x000–0x221		
		Ones place: Frequency setting selection		
		0: The setting made through UP/DOWN is valid.		
		1: The setting made through UP/DOWN is		
		invalid.		
	UP/DOWN	Tens place: Frequency control selection		
P08.44	terminal control	0: Valid only when <u>P00.06</u> =0 or <u>P00.07</u> =0	0x000	0
	setting	1: Valid for all frequency setting methods		
		2: Invalid for multi-step speed running when		
		multi-step speed running has the priority		
		Hundreds place: Action selection for stop		
		0: Setting is valid.		
		1: Valid during running, cleared after stop		

Function code	Name	Description	Default	Modify
		2: Valid during running, cleared after a stop command is received		
P08.45	Frequency increment integral rate of the UP terminal	0.01–50.00Hz/s	0.50Hz/s	0
P08.46	Frequency integral rate of the DOWN terminal	0.01–50.00Hz/s	0.50Hz/s	0
P08.47	Action selection at power-off during frequency setting	0x000–0x111 Ones place: Action selection at power-off during frequency adjusting through digitals. 0: Save the setting at power-off. 1: Clear the setting at power-off. Action selection at power-off during frequency adjusting through Modbus communication 0: Save the setting at power-off. 1: Clear the setting at power-off. Hundreds place: Action selection at power-off during frequency adjusting through DP communication methods 0: Save the setting at power-off. 1: Clear the setting at power-off.	0x000	0
P08.48	Initial electricity consumption high-order bits	Used to set the initial electricity consumption. Initial electricity consumption = $\frac{P08.48}{1000}$ +	0 kWh	0
P08.49	Initial electricity consumption low-order bits	P08.49 P08.48 setting range: 0–59999 kWh (k) P08.49 setting range: 0.0–999.9 kWh	0.0 kWh	0
P08.50	Magnetic flux braking	Used to enable magnetic flux braking. 0: Disable 100–150: A larger coefficient indicates stronger braking. The VFD can quickly slow down the motor by increasing the magnetic flux. The energy generated by the motor during braking can be transformed into heat energy by increasing the magnetic flux.	0	0

Function	Name	Description	Default	Modify
code		•		
		The VFD monitors the state of the motor		
		continuously even during the magnetic flux		
		period. Magnetic flux braking can be used for		
		motor stop, as well as for motor rotation speed		
		change. The other advantages include:		
		Braking is performed immediately after the stop		
		command is given. The braking can be started		
		without waiting for magnetic flux weakening.		
		The cooling is better. The current of the stator		
		other than the rotor increases during magnetic		
		flux braking, while the cooling of the stator is		
		more effective than the rotor.		
		This function code is used to adjust the current		
P08.51	VFD input power	display value on the AC input side.	0.56	0
	factor	0.00–1.00		
		0: Lock upon STO alarm		
		Lock upon STO alarm indicates resetting is		
	STO lock	required after state restoration if STO occurs.		
P08.52		1: No lock on STO alarm	0	0
	selection	No lock on STO alarm indicates STO alarm		
		disappears automatically after state restoration if		
		STO occurs.		
	Upper limit			
	frequency bias	0.00 Hz-P00.03(Max. output frequency)		_
P08.53	value in torque	Note: Valid only for torque control.	0.00Hz	0
	control			
	Upper limit	0: No limit on acceleration or deceleration		
	frequency	1: ACC/DEC time 1		
P08.54	ACC/DEC	2: ACC/DEC time 2	0	0
		3: ACC/DEC time 3		
	control	4: ACC/DEC time 4		

P09 group--- PID control

Function code	Name	Description	Default	Modify
P09.00	PID reference	When frequency command selection (<u>P00.06</u> , <u>P00. 07</u>) is 7, or channel of voltage setup	0	0
	source	(P04.27) is 6, the running mode of VFD is		

Function code	Name	Description	Default	Modify
		process PID control.		
		The function code determines the target given		
		channel during the PID process.		
		0: Keypad (<u>P09.01</u>)		
		1: Al1		
		2: AI2		
		3: AI3		
		4: High-speed pulse HDIA		
		5: Multi-step running		
		6: Modbus communication		
		7: PROFIBUS/CANopen/DeviceNet		
		communication		
		8: Ethernet communication		
		9: High-speed pulse HDIB		
		10: EtherCAT/Profinet communication		
		11: Programmable expansion card		
		12: 216 communication		
		The set target of process PID is a relative value,		
		for which 100% equals 100% of the feedback		
		signal of the controlled system.		
		The system always performs calculation by		
		using a relative value (0–100.0%).		
		The function code is mandatory when P09.00=0.		
D 00.04	PID reference	The base value of The function code is the	0.00/	0
P09.01	preset through	feedback of the system.	0.0%	0
	keypad	Setting range: -100.0%–100.0%		
		Used to select PID feedback channel.		
		0: Al1		
		1: AI2		
		2: AI3		
		3: High-speed pulse HDIA		
D 00.00	PID feedback	4: Modbus communication	0	
P09.02	source	5: PROFIBUS/CANopen/DeviceNet	0	0
		communication		
		6: Ethernet communication		
		7: High-speed pulse HDIB		
		8: EtherCAT/Profinet communication		
		9: Programmable expansion card		

Function	Name	Description	Default	Modify
code	Humo		Dolaan	mouny
		10: Reserved		
		11: 216 communication		
		Note: The reference channel and feedback		
		channel cannot be duplicate. Otherwise,		
		effective PID control cannot be achieved.		
		0: PID output is positive. When the feedback		
		signal is greater than the PID reference value,		
		the output frequency of the VFD will decrease to		
		balance the PID. Example: PID control on strain		
P09.03	PID output	during unwinding.	0	0
P09.03	characteristics	1: PID output is negative. When the feedback	0	0
	selection	signal is greater than the PID reference value,		
		the output frequency of the VFD will increase to		
		balance the PID. Example: PID control on strain		
		during unwinding.		
		The function is applied to the proportional gain P		
		of PID input.		
		P determines the strength of the whole PID		
		adjuster. The value 100 indicates that when the		
	Proportional gain	difference between the PID feedback value and		_
P09.04	(Kp)	given value is 100%, the range within which the	1.80	0
		PID regulator can regulate the output frequency		
		command is the max. frequency (ignoring		
		integral function and differential function).		
		Setting range: 0.00–100.00		
		Used to determine the speed of the integral		
		adjustment on the deviation of PID feedback		
		and reference from the PID regulator.		
		When the deviation of PID feedback and		
		reference is 100%, the integral adjuster works		
P09.05	Integral time (Ti)	continuously during the time (ignoring	0.90s	0
		proportional and differential function) to achieve		
		the max. output frequency ($P00.03$) or the max.		
		voltage (P04.31). Shorter integral time indicates		
		stronger adjustment.		
		Setting range: 0.00–10.00s		
	Differential time	Used to determine the strength of the change		
P09.06	(Td)	ratio adjustment on the deviation of PID	0.00s	0

Function		B 1.0	D ()	
code	Name	Description	Default	Modify
		feedback and reference from the PID regulator.		
		If the PID feedback changes 100% during the		
		time, the adjustment of the differential regulator		
		(ignoring proportional and integral function) is		
		the max. output frequency (P00.03) or the max.		
		voltage (P04.31). Longer differential time		
		indicates stronger adjustment.		
		Setting range: 0.00–10.00s		
		Used to indicate the sampling cycle of feedback.		
		The regulator calculates in each sampling cycle.		
P09.07	Sampling cycle (T)	A longer sampling cycle indicates slower	0.001s	0
		response.		
		Setting range: 0.001–10.000s		
		The output of the PID system is relative to the		
		max. deviation of the closed loop reference. As		
		shown in the following figure, the PID regulator		
		stops regulating in the range of deviation limit.		
		Set the function parameter properly to adjust the		
		accuracy and stability of the PID system.		
P09.08	PID control deviation limit	Reference	0.0%	0
P09.09	PID output upper	The function codes are used to set the upper	100.0%	0
103.09	limit	and lower limits of PID regulator output values.	100.076	0
		100.0% corresponds to the max. output		
P09.10	PID output lower	frequency (<u>P00.03</u>) or max. voltage (<u>P04.31</u>).	0.0%	0
. 00.10	limit	P09.09 setting range: P09.10—100.0%	0.070	Ŭ
		Setting range of <u>P09.10</u> : -100.0%– <u>P09.09</u>		
P09.11	Feedback offline	Used to set the PID feedback offline detection	0.0%	0
	detection value	value. When the feedback value is smaller than	0.070	Ŭ

Function code	Name	Description	Default	Modify
P09.12	Feedback offline detection time	or equal to the feedback offline detection value, and the duration exceeds the value specified by P09.12, the VFD reports "PID feedback offline fault" and the keypad displays PIDE. Output frequency 11<72, so the VFD continues running t2=P09.12 P09.11 P09.11 P09.11 Fault output PIDE P09.11 Fault output PIDE P09.11 Fault output PIDE P09.12 Fault output PIDE P09.12 Fault output PIDE	1.0s	0
P09.13	PID control selection	Program Setting range: 0.0–3600.05 0x0000–0x1111 Ones place: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens place: 0: Same as the main reference direction 1: Contrary to the main reference direction Hundreds place: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands place: 0: A+B frequency. ACC/DEC of main reference A frequency source buffering is invalid. 1: A+B frequency. ACC/DEC of main reference A frequency source buffering is valid. The ACC/DEC is determined by <u>P08.04</u> (ACC time 4).	0x0001	0
P09.14	Low frequency proportional gain (Kp)	0.00–100.00 Low-frequency switching point: 5.00Hz, high-frequency switching point: 10.00Hz (<u>P09.04</u> corresponds to high-frequency parameter), and the middle is the linear interpolation between these two points.	1.00	0

Function code	Name	Description	Default	Modify
P09.15	ACC/DEC time of PID command	0.0–1000.0s	0.0s	0
P09.16	PID output filter time	0.000–10.000s	0.000s	0
P09.18	Low frequency integral time	0.00–10.00s	0.90s	0
P09.19	Low frequency differential time	0.00–10.00s	0.00s	0
P09.20	Low frequency point for PID parameter switching	0–P09.21	5.00Hz	0
P09.21	High frequency point for PID parameter switching	P09.20–P00.03	10.00Hz	0

P10 group—Simple PLC and multi-step speed control

Function code	Name	Description	Default	Modify
P10.00		 0: Stop after running once. The VFD stops automatically after running for one cycle, and it can be started only after receiving the running command. 1: Keep running in the final value after running for one cycle. The VFD keeps the running frequency and direction of the last section after a single cycle. 2: Cyclic running. The VFD enters the next cycle after completing one cycle until receiving the stop command. 	0	0
P10.01	Simple PLC memory selection	0: No power-failure memory 1: Memory after power-off. The PLC memories its running stage and running frequency before power-off.	0	0
P10.02	Multi-step speed 0	Frequency setting range for steps from step 0 to	0.0%	0
P10.03	0	step 15: -100.0–100.0%. 100.0% corresponds to the max. output frequency <u>P00.03</u> .	0.0s (min)	0

Function				
code	Name	Description	Default	Modify
P10.04	Multi-step speed 1	Running time setting range for steps from step 0	0.0%	0
P10.05	Running time of	to step 15: 0.0–6553.5s(min). The time unit is	0.0s (min)	0
F 10.05	step 1	specified by P10.37.	0.03 (1111)	0
P10.06	Multi-step speed 2		0.0%	0
P10.07	Running time of	P10.02–P10.33 to determine the running	0.0s (min)	0
	step 2	frequency and running time of each step.		
P10.08	Multi-step speed 3	Note: The symbol of multi-step speed determines the running direction of simple	0.0%	0
P10.09	Running time of step 3	PLC, and the negative value means reverse	0.0s (min)	0
P10.10	Multi-step speed 4	running. Deceleration time P10.28	0.0%	0
P10.11	Running time of step 4	P10.02 (two sections) P10.30 P10.32 P10.32	0.0s (min)	0
P10.12	Multi-step speed 5		0.0%	0
P10.13	Running time of step 5	Acceleration line (two sections)	0.0s (min)	0
P10.14	Multi-step speed 6	P10.03 P10.05 P10.07 P10.31 P10.33	0.0%	0
P10.15	Running time of step 6	When selecting multi-step speed running, the multi-step speed is within the range of	0.0s (min)	0
P10.16	Multi-step speed 7	-fmax–fmax, and it can be set continuously. The	0.0%	0
P10.17	Running time of step 7	start/stop of multi-step stop running is also determined by <u>P00.01</u> .	0.0s (min)	0
P10.18	Multi-step speed 8	The VFD supports the setting of 16-step speed,	0.0%	0
P10.19	Running time of step 8	which are set by combined codes of multi-step terminals 1–4 set by S terminals, corresponding	0.0s (min)	0
P10.20	Multi-step speed 9	to function codes <u>P05.01</u> – <u>P05.06</u> and	0.0%	0
P10.21	Running time of step 9	correspond to multi-step speeds 0 to 15.	0.0s (min)	0
P10.22	Multi-step speed 10		0.0%	0
P10.23	Running time of step 10		0.0s (min)	0
P10.24	Multi-step speed 11	terminal 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.0%	0
P10.25	Running time of step 11	When terminals 1–4 are OFF, the frequency	0.0s (min)	0
P10.26	Multi-step speed 12	input mode is set by <u>P00.06</u> or <u>P00.07</u> . When	0.0%	0

Function code	Name		Description							Default	Modify	
P10.27	Running time of step 12		erminals 1–4 are not all OFF, the frequency set y multi-step speed will prevail, and the priority								0.0s (min)	0
P10.28	Multi-step speed 13	of mult keypad	•		Ũ	Ũ					0.0%	0
P10.29	Running time of step 13	commı Mappiı			n terr	minal	s a	nd mu	lti-ste	р	0.0s (min)	0
P10.30	Multi-step speed 14	speed Trml 1	ì	dicate on	es ter OFF	mina on	I): OF	F ON	OFF	ON	0.0%	0
P10.31	Running time of step 14	Trml 2 Trml 3	OFF OFF	OFF OFF	ON OFF	ON OFF	OF ON		ON ON	ON ON	0.0s (min)	0
P10.32	Multi-step speed 15	Trml 4 Step	OFF 0	OFF 1	OFF 2	OFF 3	OF 4	F OFF 5	OFF 6	OFF 7	0.0%	0
P10.33	Running time of step 15	Trml 1 Trml 2 Trml 3 Trml 4 Step	OFF OFF OFF ON	ON OFF OFF ON	OFF ON OFF ON 10	ON ON OFF ON	OF OF ON ON	F OFF ON	OFF ON ON ON 14	ON ON ON 15	0.0s (min)	0
P10.34	ACC/DEC time of steps 0–7 of simple PLC	Code	BiT1	inary BIT	Ste		C/ T1	ACC/ DEC T2 01	ACC/ DEC T: 10	ACC/D 3 ECT4 11	0x0000	0
	Simple FEO		BIT3 BIT5	BIT: BIT		0	-	01 01	10 10	11 11		
		P10.34	BIT7	BIT	6 3	0	0	01	10	11		
			BIT9 BIT11	BIT:		0	-	01 01	10 10	11 11		
			BIT13		_	_	-	01	10	11		
	ACC/DEC time of		BIT15					01	10	11		
P10.35	steps 8–15 of		BIT1 BIT3	-		0	-	01 01	10 10	11 11	0x0000	0
	simple PLC		BIT5	BIT		0 0	0	01	10	11		
		P10.35	BIT7	BIT	6 11	0	0	01	10	11		
			BIT9	BIT				01	10	11		
			BIT11 BIT13		_	_	-	01	10 10	11 11		
			BIT15				-	01	10	11		

Function code	Name	Description	Default	Modify
		Select corresponding acceleration/deceleration		
		time, and then convert 16-bit binary number into		
		hexadecimal number, finally, and then set		
		corresponding function codes.		
		ACC/DEC time 1 is set by <u>P00.11</u> and <u>P00.12</u> ;		
		ACC/DEC time 2 is set by <u>P08.00</u> and <u>P08.01</u> ;		
		ACC/DEC time 3 is set by <u>P08.02</u> and <u>P08.03</u> ;		
		ACC/DEC time 4 is set by <u>P08.04</u> and <u>P08.05</u> .		
		Setting range: 0x0000 –0xFFFF		
		0: Restart from the first step, namely if the VFD		
		stops during running (caused by stop command,		
		fault or power down), it will run from the first step		
		after restart.		
		1: Continue running from the step frequency		
P10.36	PLC restart mode	when interruption occurred, namely if the VFD	0	O
		stops during running (caused by stop command		
		or fault), it will record the running time of current		
		step, and enters this step automatically after		
		restart, then continue running at the frequency		
		defined by this step in the remaining time.		
		0: second; the running time of each step is		
D40.07	Multi-step time	counted in seconds	0	
P10.37	unit	1: minute; the running time of each step is	0	O
		counted in minutes		

P11 group—Protection parameters

Function code	Name	Description	Default	Modify
P11.00	Protection against phase loss	0x000–0x1111 Ones place: Reserved Tens place: 0: Disable output phase loss protection. 1: Enable output phase loss protection. Hundreds place: 0: Disable hardware input phase loss protection. 1: Enable hardware input phase loss protection. Thousands place: 0: During stop, if a hardware input phase loss	Model depended	0

Function code	Name	Description	Default	Modify
		fault occurs, it reports SPI. 1: During stop, if a hardware input phase loss fault occurs, it reports A-SPI.		
P11.01	Frequency drop at transient power-off	0: Disable 1: Enable	0	0
P11.02	Enabling energy-consumpti on braking for stop	0: Enable 1: Disable	0	O
P11.03	Overvoltage stalling protection	0: Disable 1: Enable DC bus voltage V Overvoltage stall Output Trequency Time t Note: It can be modified only when P11.26 is 1 indicating special functions are enabled.	0	0
	Overvoltage	120–150% (standard bus voltage) (380V)	136%	
P11.04	stalling protection voltage	120–150% (standard bus voltage) (220V)	120%	0
P11.05	Current limit mode	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the VFD may trip due to overcurrent during acceleration. 0x00–0x21 Ones place: Hardware and software current-limit action selection 0: Invalid 1: Always valid Tens: Hardware current limit overload alarm selection	10	0

code 0: OL2 is valid. 1: OL2 is invalid. 2: Reserved Note: It can be modified only when P11.26 is 1 indicating special functions are enabled. 250.0% © P11.06 Automatic current limit threshold current-limit protection function detects output current during running, and compares it with the exceeds the current-limit level defined by P11.06, if it exceeds the current limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. The p11.06 setting range: 50.0–250.0% (of the rated VFD output current) P11.06 setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 0.00–50.00Hz/s 0x0000 0 P11.08 VFD/motor OL/UL pre-alarm detection level 0x0000 150% 0 P11.09 pre-alarm detection time (P11.10), overload pre-alarm detection time (P11.10), overload pre-alarm 150% 0	Function	Name	Description	Default	Modify
P11.06 1: OL2 is invalid. 2: Reserved Note: It can be modified only when P11.26 is 1 indicating special functions are enabled. 250.0% © P11.06 Automatic current Current-limit protection function detects output current during running, and compares it with the exceeds the current-limit level defined by P11.06, if it exceeds the current-limit level defined by P11.06, if it exceeds the current-limit level continuously, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 Hz/s © P11.07 Frequency drop rate during current Output frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 Hz/s 0 P11.07 rate during current Output frequency will drop continuously until reaching lower limit frequency. When the output current is larger than the vFD output current) 110.00 Hz/s 0x0000 0 P11.08 VFD/motor OL/UL pre-alarm signal will be outputted. If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09, overload 0x0000 0	code				
2: Reserved Note: It can be modified only when P11.26 is 1 indicating special functions are enabled. P11.06 Automatic current limit threshold Current-limit protection function detects output current during running, and compares it with the exceeds the current-limit level defined by P11.06, if it exceeds the current-limit level defined by P11.06, if it exceeds the current-limit level continuously until reaching lower limit frequency during accelerated running. or run in decreased frequency during constant-speed running; if it exceeds the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current Current-limit level continuously until reaching lower limit frequency. When the current-limit level again, it will continue accelerated running. 10.00 P11.07 rate during current limit Current limit of the previous of the preversion of the previous of the preversion o					
P11.06 Note: It can be modified only when P11.26 is 1 indicating special functions are enabled. 250.0% Image: Comparison of the compar					
P11.06 Automatic current limit threshold Current-limit protection function detects output current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit P11.06 setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 50.0–50.00Hz/s 0x0000 0 P11.08 VFD/motor OL/UL pre-alarm selection If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm signal will be outputted. 0x0000 0					
P11.06 Automatic current limit threshold Current-limit protection function detects output current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit Current-limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit Current-limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.06 Setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 0.00–50.00Hz/s 0x0000 0 P11.08 VFD/motor OL/UL pre-alarm selection If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm signal will be outputted. 150% 0			· ·		
P11.06 limit threshold current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously util reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit frequency. When the output current is again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit frequency. When the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit frequency. When the current-limit level again, it will continue accelerated running. 10.00 P11.06 Setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 0.00–50.00Hz/s 10.00 P11.08 Pre-alarm selection If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection level (P11.09), overload pre-alarm signal will be outputted. 150%			U		
Iimit threshold current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 rate during current limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 rate during current limit Output current A 10.00 Output current limit Output current A 10.00 P11.06 setting range: 50.0–250.0% (of the rated VFD output current) 10.00 P11.08 pre-alarm selection If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection level (P11.09), overload pre-alarm detection level (P11.09), overload pre-alarm signal will be outputted. 150%	P11.06			250.0%	O
P11.07 Frequency drop rate during current limit exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 Frequency drop rate during current limit 0urrent affind output current a output current again, it will continue accelerated running. 10.00 P11.06 setting range: 50.0–250.0% (of the rated VFD output current) 10.00 P11.08 VFD/motor OL/UL pre-alarm selection Mrev VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm signal will be outputted. 0x0000 0		limit threshold			
P11.07At stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running.10.00 Hz/s10.00 Hz/sP11.07rate during current limitImport frequency during frequency output frequency the upper current A output frequency set output frequency10.00 Hz/s10.00 Hz/sP11.07rate during current per alarm selectionImport frequency frequency frequency10.00 Hz/sImport frequency frequency frequency frequency frequencyVFD/motor OL/UL pre-alarm detection levelP11.07 pre-alarm detection time (P11.09), and the duration exceeds the overload pre-alarm detection time (P11.10), overload0x0000Import output frequency frequency frequency frequencyP11.09pre-alarm detection level pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted.150%			current-limit level defined by P11.06, if it		
P11.07 rrequency drop requency drop again, it will continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 rate during current frequency drop limit current-limit output frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. rate during current frequency limit current-limit output frequency. Verplot frequency frequency P11.07 setting range: 50.0–250.0% (of the rated VFD output current) P11.08 setting range: 0.00–50.00Hz/s P11.08 pre-alarm selection If the VFD or motor output current is larger than selection If the verload pre-alarm detection level (P11.09), P11.09 pre-alarm pre-alarm and the duration exceeds the overload pre-alarm pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted. itsolw			exceeds the current-limit level, the VFD will run		
P11.07 Frequency drop rate during current limit level continuously, the VFD output frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 Hz/s P11.07 Frequency drop rate during current limit 0/uput current A 0/uput current A 10.00 Understand 0/uput current A 0/uput current A 10.00 Hz/s 10.00 P11.07 Frequency drop rate during current A 0/uput current A 0/uput current A 10.00 Hz/s 10.00 P11.06 Setting range: 50.0–250.0% (of the rated VFD output current) P11.06 setting range: 0.00–50.00Hz/s 0x0000 0 P11.08 VFD/motor OL/UL pre-alarm If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection level (P11.09), overload pre-alarm signal will be outputted. 150% 0			at stable frequency during accelerated running,		
P11.07 Frequency drop rate during current limit level continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 Hz/s P11.07 Frequency drop rate during current limit 0/uput current of 0/uput current of the event o			or run in decreased frequency during		
P11.07 Frequency drop frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. Tate during current limit 10.00 Hz/s 10.00 P11.07 rate during current limit Output current A Output current A Output trequency frequency fr			constant-speed running; if it exceeds the		
P11.07 Frequency drop rate during current limit Iower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 P11.07 rate during current limit Output current A output frequency f output frequency f output frequency f frequency 10.00 P11.07 P11.06 Setting range: 50.0–250.0% (of the rated VFD output current) 10.00 P11.08 P11.07 setting range: 50.0–250.0% (of the rated VFD output current) 0x0000 P11.08 pre-alarm If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted. 0x0000			current-limit level continuously, the VFD output		
P11.07 Frequency drop rate during current limit detected to be lower than the current-limit level again, it will continue accelerated running. 10.00 Hz/s P11.07 rate during current limit 0uput current A understand 0uput current A understand 10.00 Hz/s P11.06 Setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 0.00–50.00Hz/s 0x0000 P11.08 pre-alarm selection If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload 0x0000 P11.09 pre-alarm detection level 150% 0			frequency will drop continuously until reaching		
P11.07Frequency drop rate during current limitagain, it will continue accelerated running. Current.Im threshold10.00 Hz/s10.00 Hz/			lower limit frequency. When the output current is		
P11.07 rate during current limit Output current A output trequency f output frequency f output for f output for f output f			detected to be lower than the current-limit level		
P11.07 rate during current limit Output current A Output terguency f Set requency f Set requency f Output current A Output terguency f Hz/s Image: Signal Set Figure for the set set of the set figure for the set set of the set of the set set of the set of the set set of the set of the set of the set set of the set of the set of the set set of the set of the set of the set set of the set of the set of the set of the set set of the set of the set of the set of the set set of the set of the set of the set of the set set of the set of the set of the set of the set of the set set of the set of the		Frequency drop	again, it will continue accelerated running.	10.00	
limit threshold undershold	P11.07	rate during current			O
P11.06 setting range: 50.0–250.0% (of the rated VFD output current) P11.07 setting range: 0.00–50.00Hz/s P11.07 P11.07 setting range: 0.00–50.00Hz/s 0x0000 0 P11.08 pre-alarm 0x0000 0 selection If the VFD or motor output current is larger than 0x0000 0 P11.09 pre-alarm and the duration exceeds the overload 150% 0 P11.09 pre-alarm and the duration exceeds the overload 150% 0 P11.09 pre-alarm pre-alarm detection time (P11.10), overload 0 0		limit	threshold Output frequency f Set frequency Acceleration Constant speed	Π2/S	
VFD output current) P11.07 setting range: 0.00–50.00Hz/s 0 P11.08 VFD/motor OL/UL 0x0000 0 P11.08 pre-alarm 0x0000 0 selection If the VFD or motor output current is larger than 0x0000 0 P11.09 pre-alarm and the duration exceeds the overload 150% 0 detection level pre-alarm detection time (P11.10), overload 150% 0 Overload pre-alarm signal will be outputted. Image: Comparison output current					
P11.07 setting range: 0.00–50.00Hz/s Image: 0.00–50.00Hz/s P11.08 VFD/motor OL/UL pre-alarm 0x0000 0 selection If the VFD or motor output current is larger than selection 0x0000 0 P11.09 pre-alarm and the overload pre-alarm detection level (P11.09), pre-alarm 150% 0 P11.09 pre-alarm pre-alarm detection time (P11.10), overload 150% 0 P11.09 pre-alarm signal will be outputted. 0 0					
P11.08 VFD/motor OL/UL 0x0000 0 P11.08 pre-alarm 0x0000 0 Selection If the VFD or motor output current is larger than 0x0000 0 P11.09 pre-alarm and the overload pre-alarm detection level (P11.09), detection level 150% 0 P11.09 pre-alarm and the duration exceeds the overload 150% 0 Overload pre-alarm detection time (P11.10), overload 0 0			1 ,		
P11.08 pre-alarm 0x0000 0 selection If the VFD or motor output current is larger than 0 0 P11.09 Overload the overload pre-alarm detection level (P11.09), pre-alarm 150% 0 detection level pre-alarm detection time (P11.10), overload 150% 0 Overload pre-alarm signal will be outputted. 1 0		VFD/motor OI /UI	<u> </u>		
selection If the VFD or motor output current is larger than Overload the overload pre-alarm detection level (P11.09), pre-alarm and the duration exceeds the overload 150% detection level pre-alarm detection time (P11.10), overload Overload pre-alarm signal will be outputted.	P11.08			0x0000	0
Overload the overload pre-alarm detection level (P11.09), pre-alarm and the duration exceeds the overload 150% 0 detection level pre-alarm detection time (P11.10), overload 0 0 Overload pre-alarm signal will be outputted. 0		•	If the VFD or motor output current is larger than		-
P11.09 pre-alarm and the duration exceeds the overload 150% O detection level pre-alarm detection time (P11.10), overload O Overload pre-alarm signal will be outputted. Image: Comparison of the outputted output ted	<u> </u>				
detection level pre-alarm detection time (P11.10), overload Overload pre-alarm signal will be outputted.	P11.09		•	150%	0
Overload pre-alarm signal will be outputted.					
			· · · · · · · · · · · · · · · · · · ·		
	P11.10			1.00s	0
detection time				1.000	

Function code	Name	Description	Default	Modify
	Name	Description	Default	Modify
		0: Detect all the time. 1: Detect during constant speed running. Thousands place: VFD overload current		
		reference selection 0: Related to current calibration coefficient 1: Irrelated to current calibration coefficient <u>P11.09</u> setting range: <u>P11.11</u> –200% (relative value determined by the ones place of <u>P11.08</u>)		

Function code	Name	Description	Default	Modify
		P11.10 setting range: 0.01–3600.00s		
P11.11	Underload pre-alarm detection threshold	Underload pre-alarm signal will be outputted if the output current of the VFD or motor is lower than underload pre-alarm detection level (P11.11), and the duration exceeds underload	25%	0
P11.12	Underload pre-alarm detection time	pre-alarm detection time (<u>P11.12</u>). <u>P11.11</u> setting range: 0– <u>P11.09</u> (relative value determined by the ones place of <u>P11.08</u>) Setting range of <u>P11.12</u> : 0.01–360.00s	0.05s	0
P11.13	Fault output terminal action upon fault occurring	Used to set the action of fault output terminals at undervoltage and fault reset. 0x00–0x11 Ones place: 0: Act upon an undervoltage fault 1: Do not act upon an undervoltage fault Tens place: 0: Act during automatic reset 1: Do not act during the automatic reset period	0x00	0
P11.14	Speed deviation detection value	0.0–50.0% Used to set the speed deviation detection value.	10.0%	0
P11.15	Speed deviation detection time	Used to set the speed deviation detection time. If P11.14 is set to a non-zero value, and the speed deviation is greater than the value of P11.14, which lasts the time specified by P11.15, the speed deviation fault dEu is reported. Note: Speed deviation protection is invalid when P11.15=0.0. Actual detection value Set detection value Set detection value Set detection value 11-t2, so the VFD continues running t2=P11.15 Setting range: 0.0–10.0s	2.0s	0

Function code	Name	Description	Default	Modify
P11.16	Automatic frequency- reduction during voltage drop	0-1 0: Disable 1: Enable Standard bus voltage Utput frequency f Set frequency bus voltage Utput frequency f Set Set Standard Set Set frequency Standard Time t Time t Set Standard Time t Set frequency Standard Time t	0	0
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	Used to set the proportional coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	100	0
P11.18	Proportional coefficient of voltage regulator during undervoltage stall	Used to set the integral coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	40	0
P11.19	Proportional coefficient of current regulator during undervoltage stall	Used to set the proportional coefficient of the active current regulator during undervoltage stall. Setting range: 0–1000	25	0
P11.20	Integral coefficient of current regulator during undervoltage stall	Used to set the integral coefficient of the active current regulator during undervoltage stall. Setting range: 0–2000	150	0
P11.21	Proportional coefficient of voltage regulator during	Used to set the proportional coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	60	0

Function code	Name	Description	Default	Modify
	overvoltage stall			
P11.22	Integral coefficient of voltage regulator during overvoltage stall	This parameter is used to set the integral coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	10	0
P11.23	Proportional coefficient of current regulator during overvoltage stall	This parameter is used to set the proportional coefficient of the active current regulator during overvoltage stall. Setting range: 0–1000	60	0
P11.24	Integral coefficient of current regulator during overvoltage stall	This parameter is used to set the integral coefficient of the active current regulator during overvoltage stall. Setting range: 0–2000	250	0
P11.25	Enable VFD overload integral	0: Disable 1: Enable When this parameter is set to 0, the overload timing value <u>P17.48</u> is reset to zero after the VFD is stopped. In this case, the determination of VFD overload takes more time, and therefore the effective protection over the VFD is weakened. When this parameter is set to 1, the overload timing value <u>P17.48</u> is not reset, and the overload timing value is accumulative. In this case, the determination of VFD overload takes less time, and therefore the protection over the VFD can be performed more quickly. VFD overload curve: Somin	0	Ø

Function code	Name	Description	Default	Modify
		Overload start 1 Overload end 1 Overload start 2 Start/stop command Start 5 start Overload counting When P11.25=0 P17.48 Overload counting When P11.25=1 P17.48 P17.48 Time t		
P11.26	Enabling special functions	0–1 0: Disable special functions 1: Enable special functions Special functions include <u>P11.03</u> (Overvoltage stall protection), <u>P11.05</u> (Current-limit selection), <u>P01.00</u> (Running mode of start), <u>P00.13</u> (Running direction), P03.20 (Set upper limit of the torque when motoring via keypad), and P03.21 (Set upper limit of brake torque via keypad). When this parameter is set to 0, special function codes are restored to the factory settings and are not displayed, and therefore cannot be modified. When this parameter is set to 1, special function codes can be modified and used normally. Note: Use this function only in special cases.	0	Ø
P11.27	VF oscillation control method	0x00–0x11 Ones place: 0: Method 1 1: Method 2 Tens place: Reserved	0x00	0

P12 group—Parameters of motor 2

Function code	Name	Description	Default	Modify
P12.00	Type of motor 2	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0	0
P12.01	Rated power of AM 2	0.1–3000.0kW	Model depended	0

Function code	Name	Description	Default	Modify
P12.02	Rated frequency of AM 2	0.01Hz– <u>P00.03</u> (Max. output frequency)	50.00Hz	0
P12.03	Rated speed of AM 2	1–36000rpm	Model depended	O
P12.04	Rated voltage of AM 2	0–1200V	Model depended	O
P12.05	Rated current of AM 2	0.8–6000.0A	Model depended	O
P12.06	Stator resistance of AM 2	0.001–65.535Ω	Model depended	0
P12.07	Rotor resistance of AM 2	0.001–65.535Ω	Model depended	0
P12.08	Leakage inductance of AM 2	0.1–6553.5mH	Model depended	0
P12.09	Mutual inductance of AM 2	0.1–6553.5mH	Model depended	0
P12.10	No-load current of AM 2	0.1–6553.5A	Model depended	0
P12.11	Magnetic saturation coefficient 1 of iron core of AM 2	0.0–100.0%	80%	0
P12.12	Magnetic saturation coefficient 2 of iron core of AM 2	0.0–100.0%	68%	0
P12.13	Magnetic saturation coefficient 3 of iron core of AM 2	0.0–100.0%	57%	0
P12.14	Magnetic saturation coefficient 4 of iron core of AM 2	0.0–100.0%	40%	0
P12.15	Rated power of SM 2	0.1–3000.0kW	Model depended	0

Function code	Name	Description	Default	Modify
P12.16	Rated frequency of SM 2	0.01Hz– <u>P00.03(</u> Max. output frequency)	50.00Hz	O
P12.17	Number of pole pairs of SM 2	1–128	2	O
P12.18	Rated voltage of SM 2	0–1200V	Model depended	O
P12.19	Rated current of SM 2	0.8–6000.0A	Model depended	O
P12.20	Stator resistance of SM 2	0.001–65.535Ω	Model depended	0
P12.21	Direct-axis inductance of SM 2	0.01–655.35mH	Model depended	0
P12.22	Quadrature-axis inductance of SM 2	0.01–655.35mH	Model depended	0
P12.23	Counter-emf constant of SM 2	0–10000V	300	0
P12.24	Reserved	0–0xFFFF	0x0000	•
P12.25	Reserved	0%–50.0% (of the motor rated current)	10%	•
P12.26	Overload protection of motor 2	0: No protection1: Common motor (with low-speed compensation)2: Frequency-variable motor (without low-speed compensation)	2	0
P12.27	Overload protection coefficient of motor 2	Motor overload multiples M=lout/(In*K) "In" is rated motor current, "lout" is VFD output current, and "K" is motor overload protection coefficient. A smaller value of "K" indicates a bigger value of "M". When M=116%, protection is performed after motor overload lasts for 1 hour; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately.	100.0%	0

Function code	Name	Description	Default	Modify
		1 min 1 min		
P12.28	Power display calibration coefficient of motor 2	0.00–3.00	1.00	0
P12.29	Parameter display of motor 2	 Display by motor type. In this mode, only parameters related to the present motor type are displayed. Display all. In this mode, all the motor parameters are displayed. 	0	0
P12.30	System inertia of motor 2	0–30.000kgm ²	0.000	0

P13 group-SM control

Function code	Name	Description	Default	Modify
P13.00	SM injected-current decrease ratio	Used to set the reduction rate of the input reactive current. When the active current of the synchronous motor increases to some extent, the input reactive current can be reduced to improve the power factor of the motor. Setting range: 0.0%–100.0% (of the motor rated current)	80.0%	0
P13.01	Detection mode of initial pole	0: No detection 1: High-frequency superposition 2: Pulse superposition	0	0
P13.02	Pull-in current 1	Pull-in current is the pole position orientation current; pull-in current 1 is valid within the lower limit of pull-in current switch-over frequency threshold. If you need to increase the start torque, increase the value of this function parameter properly.	20.0%	0

Function code	Name	Description	Default	Modify
		Setting range: 0.0%–100.0% (of the motor rated current)		
P13.03	Pull-in current 2	Pull-in current is the pole position orientation current; pull-in current 2 is valid within the lower limit of pull-in current switch-over frequency threshold. You do not need to change the value in most cases. Setting range: 0.0%–100.0% (of the motor rated current)	10.0%	0
P13.04	Source-current switchover frequency	0.00Hz– <u>P00.03</u> (Max. output frequency)	10.00Hz	0
P13.05	Reserved	200Hz–1000Hz	500Hz	O
P13.06	High-frequency superposition voltage	Used to set the pulse current threshold when the initial magnetic pole position is detected in the pulse mode, The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–300.0% (of the motor rated voltage)	100.0%	0
P13.07	Reserved	0.0–400.0	0.0	0
P13.08	Control parameter 1		0	0
P13.09	Control parameter 2	Used to set the frequency threshold for enabling the counter-electromotive force phase-locked loop in SVC 0. When the running frequency is lower than the value of the function code, the phase-locked loop is disabled; and when the running frequency is higher than that, the phase-locked loop is enabled. Setting range: 0–655.35	2.00	0
P13.10	Reserved	0.0–359.9	0.0	0
P13.11	Maladjustment detection time	Used to adjust the responsiveness of anti-maladjustment function. If the load inertia is large, increase the value of this parameter properly, however, the responsiveness may slow down accordingly. Setting range: 0.0–10.0s	0.5s	0

E.

Function code	Name	Description	Default	Modify
P13.12	High-frequency compensation coefficient of SM	Valid when the motor speed exceeds the rated speed. If oscillation occurred to the motor, adjust this parameter properly. Setting range: 0.0–100.0%	0.0%	0
P13.13	High-frequency current-loop	0-300.0% (of the rated VFD output current)	20.0%	0

P14 group--Serial communication

Function code	Name	Description	Default	Modify
P14.00	Local communication address	Setting range: 1–247 When the master writes the slave communication address to 0 indicating a broadcast address in a frame, all the salves on the Modbus bus receive the frame but do not respond to it. The communication addresses on the communication network are unique, which is the basis of the point-to-point communication. Note: The communication address of a slave cannot be set to 0.	1	0
P14.01	Communication baud rate	The function code is used to set the rate of data transmission between the upper computer and the VFD. 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS 7: 115200BPS Note: The baud rate set on the VFD must be consistent with that on the upper computer. Otherwise, the communication fails. A greater baud rate indicates faster communication.	4	0
P14.02	Data bit check	The data format set on the VFD must be	1	0

Function code	Name	Description	Default	Modify
		consistent with that on the upper computer.		
		Otherwise, the communication fails.		
		0: No check (N, 8, 1) for RTU		
		1: Even check (E, 8, 1) for RTU		
		2: Odd check (O, 8, 1) for RTU		
		3: No check (N, 8, 2) for RTU		
		4: Even check (E, 8, 2) for RTU		
		5: Odd check (O, 8, 2) for RTU		
		0–200ms		
		The function code indicates the communication		
		response delay, that is, the interval from when		
		the VFD completes receiving data to when it		
		sends response data to the upper computer. If		
		the response delay is shorter than the rectifier		
P14.03	Communication	processing time, the rectifier sends response	5	0
	response delay	data to the upper computer after processing		
		data. If the delay is longer than the rectifier		
		processing time, the rectifier does not send		
		response data to the upper computer until the		
		delay is reached although data has been		
		processed.		
		0.0 (invalid)–60.0s		
		When the function code is set to 0.0, the		
		communication timeout time is invalid.		
		When the function code is set to a non-zero		
	O	value, the system reports the "485		
P14.04	Communication	communication fault" (CE) if the communication	0.0s	0
	timeout time	interval exceeds the value.		
		In general, the function code is set to 0.0. When		
		continuous communication is required, you can		
		set the function code to monitor communication		
		status.		
		0: Report an alarm and coast to stop		
		1: Keep running without reporting an alarm		
D1105	Transmission	2: Stop according to the stop mode without	0	
P14.05	error processing	generating alarms	0	0
		(only in the communication-based control mode)		
		3: Stop according to the stop mode without		

.

Functio code	n Name	Description	Default	Modify
		generating alarms (in all control modes)		
P14.06	Communication processing action	0x00–0x11 Ones place: 0: Respond to write operations 1: Not respond to write operations Tens place: 0: Password protection is invalid. 1: Password protection is valid.	0x00	0

P15 group—Communication expansion card 1 functions

Function code	Name	Description	Default	Modify		
P15.00– P15.27	See the operation	See the operation manual of communication expansion card for details				
P15.28	Master/slave CAN communication address	0–127	1	O		
P15.29	Master/slave CAN communication baud rate	0: 50Kbps 1: 100Kbps 2: 125Kbps 3: 250Kbps 4: 500Kbps 5: 1M bps	2	0		
P15.30	Master/slave CAN communication timeout period	0.0 (invalid)–300.0s	0.0s	0		
P15.31– P15.69	See Goodrive350 series VFD communication expansion card manual for details.					

P16 group—Communication expansion card 2 functions

Function code	Name	Description	Default	Modify
P16.00-	See Coodrive250		al for dotails	
P16.23	See Goodrive350 series VFD communication expansion card manual for details.			
	Time to identify	0.0–600.0s		
P16.24	expansion card in	The value 0.0 indicates that identification fault	0.0s	0
	card slot 1	will not be detected.		
P16.25	Time to identify	0.0–600.0s	0.0s	0

Function code	Name	Description	Default	Modify
	expansion card in	The value 0.0 indicates that identification fault		
	card slot 2	will not be detected.		
	Time to identify	0.0–600.0s		
P16.26	expansion card in	The value 0.0 indicates that identification fault	0.0s	0
	card slot 3	will not be detected.		
	Communication	0.0–600.0s		
P16.27	timeout period of	The value 0.0 indicates offline fault will not be	0.0s	0
	card at slot 1	detected.		
	Communication	0.0–600.0s		
P16.28	timeout period of	The value 0.0 indicates offline fault will not be	0.0s	0
	card at slot 2	detected.		
	Communication	0.0–600.0s		
P16.29	timeout period of	The value 0.0 indicates offline fault will not be	0.0s	0
	card at slot 3	detected.		
P16.30-				
P16.69	See Goodrive350 s	series VFD communication expansion card manua	ai for details.	

P17 group--Status viewing

Function code	Name	Description	Default	Modify
P17.00	Set frequency	Displays the present set frequency of the VFD. Range: 0.00Hz– <u>P00.03</u>	50.00Hz	•
P17.01	Output frequency	Displays the present output frequency of the VFD. Range: 0.00Hz– <u>P00.03</u>	0.00Hz	•
P17.02	Ramp reference frequency	Displays the present ramp reference frequency of the VFD. Range: 0.00Hz- <u>P00.03</u>	0.00Hz	•
P17.03	Output voltage	Displays the present output voltage of the VFD. Range: 0–1200V	0V	•
P17.04	Output current	Displays the valid value of current output current of the VFD. Range: 0.0–5000.0A	0.0A	•
P17.05	Motor rotation speed	Displays the current motor speed. Range: 0–65535RPM	0 RPM	•
P17.06	Torque current	Displays the present torque current of the VFD. Range: -3000.0–3000.0A	0.0A	•
P17.07	Exciting current	Displays the present exciting current of the VFD.	0.0A	

Function code	Name	Description	Default	Modify
		Range: -3000.0–3000.0A		
P17.08	Motor power	Displays the present motor power; 100% relative to the rated motor power. The positive value is the motoring state while the negative value is the generating state. Range: -300.0–300.0% (relative to the rated motor power)	0.0%	•
P17.09	Motor output torque	Displays the present output torque of the VFD; 100% relative to the rated motor torque. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state. Range: -250.0–250.0%	0.0%	•
P17.10	Estimated motor frequency	Displays the estimated motor rotor frequency under the open-loop vector condition. Range: 0.00– <u>P00.03</u>	0.00Hz	•
P17.11	DC bus voltage	Displays the present DC bus voltage of the VFD. Range: 0.0–2000.0 V	0V	•
P17.12	Digital input terminal status	Displays the present digital input terminal state of the VFD. 0x00–0x3F Corresponds to HDIB, HDIA, S4, S3, S2 and S1 respectively.	0	•
P17.13	Digital output terminal status	Displays the present digital output terminal state of the VFD. 0x0–0xF Corresponds to RO2, RO1, HDO and Y1 respectively	0	•
P17.14	Digital adjustment value	Displays the adjustment on the VFD through the UP/DOWN terminal. Range: 0.00Hz– <u>P00.03</u>	0.00Hz	•
P17.15	Torque reference value	Relative to the percentage of the rated torque of the present motor, displaying the torque reference. Range: -300.0%–300.0% (of the motor rated current)	0.0%	•

Function code	Name	Description	Default	Modify
P17.16	Linear speed	0–65535	0	•
P17.17	Reserved	0–65535	0	•
P17.18	Count value	0–65535	0	•
P17.19	AI1 input voltage	Displays the Al1 input signal. Range: 0.00–10.00V	0.00V	•
P17.20	AI2 input voltage	Displays the Al2 input signal. Range: -10.00V–10.00V	0.00V	•
P17.21	HDIA input frequency	Display HDIA input frequency. Range: 0.000–50.000kHz	0.000 kHz	•
P17.22	HDIB input frequency	Display HDIB input frequency. Range: 0.000–50.000kHz	0.000 kHz	•
P17.23	PID reference value	Displays the PID reference value. Range: -100.0–100.0%	0.0%	•
P17.24	PID feedback value	Displays the PID feedback value. Range: -100.0–100.0%	0.0%	•
P17.25	Motor power factor	Displays the power factor of the current motor. Range: -1.00–1.00	1.00	•
P17.26	Duration of this run	Displays the duration of this run of the VFD. Range: 0–65535min	0m	•
P17.27	Simple PLC and actual step of multi-step speed	Displays simple PLC and present step number of multi-step speed. Range: 0–15	0	•
P17.28	Motor ASR controller output	Displays the ASR controller output value under the vector control mode, relative to the percentage of rated motor torque. Range: -300.0%–300.0% (of the motor rated current)	0.0%	•
P17.29	Pole angle of open-loop SM	Displays the initial identification angle of SM. Range: 0.0–360.0	0.0	•
P17.30	Phase compensation of SM	Displays the phase compensation of SM. Range: -180.0–180.0	0.0	•
P17.31	High-frequency superposition current of SM	0.0%–200.0% (of the motor rated current)	0.0	•
P17.32	Motor flux linkage	0.0%–200.0%	0.0%	•
P17.33	Exciting current	Displays the exciting current reference value	0.0A	

Function code	Name	Description	Default	Modify
	reference	under the vector control mode. Range: -3000.0–3000.0A		
P17.34	Torque current reference	Displays the torque current reference value under the vector control mode. Range: -3000.0–3000.0A	0.0A	•
P17.35	AC incoming current	Displays the valid value of incoming current on AC side. Range: 0.0–5000.0A	0.0A	•
P17.36	Output torque	Displays the output torque value. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state. Range: -3000.0Nm–3000.0Nm	0.0Nm	•
P17.37	Motor overload count value	0–65535	0	•
P17.38	Process PID output	-100.0%–100.0%	0.00%	•
P17.39	Function codes in parameter download error	0.00–99.00	0.00	•
P17.40	Motor control mode	Ones place: Control mode 0: Vector 0 1: Vector 1 2: Space voltage vector control 3: Closed-loop vector control Tens place: Control status 0: Speed control 1: Torque control 2: Position control 0: Motor 1 1: Motor 2	0x2	•
P17.41	Electromotive torque upper limit	0.0%–300.0% (of the motor rated current)	180.0%	•
P17.42	Braking torque upper limit	0.0%–300.0% (of the motor rated current)	180.0%	•
P17.43	Forward rotation	0.00– <u>P00.03</u>	50.00Hz	

Function code	Name	Description	Default	Modify
	upper-limit			
	frequency in			
	torque control			
P17.44	Reverse rotation upper-limit frequency in torque control	0.00– <u>P00.03</u>	50.00Hz	•
P17.45	Inertia compensation torque	-100.0%–100.0%	0.0%	•
P17.46	Friction compensation torque	-100.0%–100.0%	0.0%	•
P17.47	Motor pole pairs	0–65535	0	•
P17.48	VFD overload count value	0–65535	0	•
P17.49	Frequency set by A source	0.00– <u>P00.03</u>	0.00Hz	•
P17.50	Frequency set by B source	0.00– <u>P00.03</u>	0.00Hz	•
P17.51	PID proportional output	-100.0%–100.0%	0.00%	•
P17.52	PID integral output	-100.0%–100.0%	0.00%	•
P17.53	PID differential output	-100.0%–100.0%	0.00%	•
P17.54	Present proportional gain	0.00–100.00	0.00%	•
P17.55	Present integral time	0.00–10.00s	0.00%	•
P17.56	Present differential time	0.00–10.00s	0.00%	•
P17.57	Present terminal status in multi-step speed setting	0–0xf	0	•
P17.58	High bits in VFD power generated	0–65535° (*1000)	0	•

Funct cod		Name	Description	Default	Modify
P17.	.59	Low bits in VFD power generated	0.0–999.9 kWh	0.0	•

P18 group—Status viewing in closed-loop control

Function code	Name	Description	Default	Modify
P18.00	Actual frequency of encoder	Used to indicate the actual-measured encoder frequency. The value of forward running is positive; the value of reverse running is negative. Range: -999.9–3276.7Hz	0.0Hz	•
P18.01	Encoder position count value	Encoder count value, quadruple frequency. Range: 0–65535	0	•
P18.02	Encoder Z pulse count value	Corresponding count value of encoder Z pulse. Range: 0–65535	0	•
P18.03	High-order bit of position reference value	It is cleared after stop. Setting range: 0–30000	0	•
P18.04	Low-order bit of position reference value	It is cleared after stop. Range: 0–65535	0	•
P18.05	High-order bit of position feedback value	It is cleared after stop. Setting range: 0–30000	0	•
P18.06	Low-order bit of position feedback value	It is cleared after stop. Range: 0–65535	0	•
P18.07	Position deviation	Deviation between the reference position and actual running position. Setting range: -32768–32767	0	•
P18.08	Position of position reference point	Position of reference point of Z pulse when the spindle stops accurately. Range: 0–65535	0	•
P18.09	Present position setting of spindle	Present position setup when the spindle stops accurately. Setting range: 0–359.99	0.00	•
P18.10	Present position when spindle stops accurately	Present position when the spindle stops accurately. Range: 0–65535	0	•

Function code	Name	Description	Default	Modify
P18.11	Encoder Z pulse direction	Z pulse direction display. When the spindle stops accurately, there may be a couple of pulses' error between the position of forward and reverse orientation, which can be eliminated by adjusting Z pulse direction of <u>P20.02</u> or exchanging phase AB of encoder. 0: Forward 1: Reverse	0	•
P18.12	Encoder Z pulse angle	Reserved. Setting range: 0.00–359.99	0.00	•
P18.13	Encoder Z pulse error times	Reserved. Range: 0–65535	0	•
P18.14	High-order bits of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. 0–65535	0	•
P18.15	Low-order bits of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. 0–65535	0	•
P18.16	Speed measured by main control board	-3276.8–3276.7Hz	0.0Hz	•
P18.17	Pulse command frequency	Pulse command (A2/B2 terminal) is converted to the set frequency, and it is valid under the pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.00Hz	•
P18.18	Pulse command feedforward	Pulse command (A2/B2 terminal) is converted to the set frequency, and it is valid under the pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.00Hz	•
P18.19	Position regulator output	Position regulator output frequency in position control. Range: -3276.8–3276.7Hz	0	•
P18.20	Count value of resolver	Count value of the resolver. Range: 0–65535	0	•
P18.21	Resolver angle	Pole position angle read by the resolver-type encoder. Setting range: 0.00–359.99	0.00	•
P18.22	Pole angle of closed-loop SM	Present pole position. Setting range: 0.00–359.99	0.00	•

Function code	Name	Description	Default	Modify
P18.23	SW 2	0–65535	0	•
P18.24	High-order bit of count value of pulse reference	Pulse command (A2,B2) count value. The count value is accumulated only if the VFD is powered on. 0–65535	0	•
P18.25	Low-order bit of count value of pulse reference	Pulse command (A2,B2) count value. The count value is accumulated only if the VFD is powered on. 0–65535	0	•
P18.26	Speed measured by PG card	-3276.8–3276.7Hz	0.0Hz	•
P18.27	Encoder UVW sectors	0–7	0	•
P18.28	Encoder PPR display	0–65535	0	•
P18.29	Angle compensation value of SM	-180.0–180.0	0.0	•
P18.30	Reserved	0–65535	0	•
P18.31	Z pulse value of pulse reference	0–65535	0	•
P18.32	Main control board measured value of pulse reference	-3276.8–3276.7Hz	0.0Hz	•
P18.33	PG card measured value of pulse reference	-3276.8–3276.7Hz	0.0Hz	•
P18.34	Present encoder filter width	0–63	0	•
P18.35	Reserved	0–65535	0	•

P19 group-Expansion card status viewing

Function code	Name	Description	Default	Modify
P19.00	Expansion card type of card slot 1		0	•
P19.01	Expansion card		0	
P19.01	type of card slot 2	2: I/O card 1	0	•

Function code	Name	Description	Default	Modify
P19.02	Expansion card type of card slot 3	 3: Incremental PG card 4: Incremental PG card with UVW 5: Ethernet 6: DP 7: Bluetooth card 8: Rotary PG card 9: CANopen communication card 10: WIFI card 11: PROFINET communication card 12: Sine-cosine PG card without CD signals 13: Sine-cosine PG card with CD signals 14: Absolute encoder PG card 15: CAN master/slave communication card 16: Modbus communication card 17: EtherCAT 18: BACnet 19: DeviceNet communication card 20: I/O card 2 for hoisting 21: 216 communication card 22–23: Reserved 24: CAN-NET two-in-one communication card 	0	•
P19.03	Software version of card at slot 1	0.00–655.35	0.00	•
P19.04	Software version of card at slot 2	0.00–655.35	0.00	•
P19.05	Software version of card at slot 3	0.00–655.35	0.00	•
P19.06	Terminal input status of I/O card	0–0xFFFF	0	•
P19.07	Terminal output status of I/O card	0–0xFFFF	0	•
P19.09	AI3 input voltage of I/O card	0.00–10.00V	0.00V	•

P20 group-Encoder of motor 1

Functior code	Name	Description	Default	Modify
P20.00	Encoder type	0: Incremental encoder	0	•

Function code	Name	Description	Default	Modify
	display	1: Resolver-type encoder		
		2: Sin/Cos encoder		
		3: Endat absolute encoder		
		Number of pulses generated when the encoder		
P20.01	Encoder pulse	revolves for one circle.	1024	O
	number	Setting range: 0–60000		
		Ones place: AB direction		
		0: Forward		
		1: Reverse		
		Tens place: Z pulse direction (reserved)		
P20.02	Encoder direction	0: Forward	0x000	O
		1: Reverse		
		Hundreds: CD/UVW pole signal direction		
		0: Forward		
		1: Reverse		
	Detection time of			
P20.03	encoder offline fault	Detection time of encoder offline fault (ENC1O).	2.0s	0
		Setting range: 0.0–10.0s		
	Detection time of	Detection time of encoder reversal fault		
P20.04	encoder reversal	(ENC1D).	0.8s	0
	fault	Setting range: 0.0–100.0s		
		Setting range: 0x00 –0x99		
	Filter times of	Ones place: Low-speed filter time,		
P20.05	encoder detection	corresponding to 2^(0–9)*125µs.	0x33	0
		Tens place: High-speed filter times,		
		corresponding to 2^(0–9)*125µs.		
	Speed ratio	You need to set the function parameter when		
P20.06	between encoder	the encoder is not installed on the motor shaft	1.000	0
F 20.00	mounting shaft	and the drive ratio is not 1.	1.000	0
	and motor	Setting range: 0.001–65.535		
		Bit0: Enable Z pulse calibration		
		Bit1: Enable encoder angle calibration		
	Control	Bit2: Enable SVC speed measurement		
P20.07	parameters of SM	Bit3: Reserved	0x0003	0
	parameters of SM	Bit4: Reserved		
		Bit5: Reserved		
		Bit6: Enable the CD signal calibration		

Function code	Name	Description	Default	Modify
code		Bit7: Reserved		
		Bit8: Do not detect encoder faults during		
		autotuning		
		Bit9: Enable Z pulse detection optimization		
		Bit10: Enable the initial Z pulse calibration		
		optimization		
		Bit12: Clear the Z pulse arrival signal after stop		
		Ones place: Z pulse detection		
		0: Disable		
P20.08	Enable Z pulse	1: Enable	0x10	0
1 20.00	offline detection	Tens place: UVW pulse detection (for SM)	OXIO	U
		0: Disable		
		1: Enable		
		Relative electric angle between the encoder Z		0
P20.09	Initial angle of Z pulse	pulse and the motor pole position.	0.00	
		Setting range: 0.00–359.99		-
		Relative electric angle between the encoder		
P20.10	Pole initial angle	position and the motor pole position.	0.00	0
	Ū	Setting range: 0.00–359.99		
		Range: 0–3		
		1: Rotary autotuning (DC braking)		
		2: Static autotuning (suitable for resolver-type		
		encoder, sin/cos with CD signal feedback)		
	Autotuning pole	3: Rotary autotuning (initial angle identification)		_
P20.11	initial angle	The pole initial angle obtained through rotary	0	O
	Ũ	autotuning 1 is accurate. Rotary autotuning is		
		recommended in most cases, in which the motor		
		needs to be decoupled from the load or the		
		motor load is light.		
	Speed			
D00.40	measurement	0: No optimization	4	
P20.12	optimization	1: Optimization mode 1	1	O
	selection	2: Optimization mode 2		
D00.40	CD signal zero	0.05505		
P20.13	offset gain	0–65535	0	0
P20.14	Encoder type	Ones place: Incremental encoder	0x00	O

Function	Name	Description	Default	Modify
code	a a la ation			
	selection	0: without UVW 1: with UVW		
		Tens place: Sin/Cos encoder		
		0: without CD signal		
		1: with CD signal		
		0: Measuring speed by PG card/Measuring		
		height by HDI		
		1: Measuring locally through HDIA and HDIB.	he 0 0	
		Only the 24V incremental encoders are		0 0
	Cread	supported.		
P20.15	Speed measurement mode	24: Pulses are obtained through CANopen or PROFIBUS-DP communication to measure the speed.	0	O
		24: Pulses are obtained through PROFINET		
		communication to measure the speed.		
		Note: HDI height measuring is implemented		
		through the HDIA and HDIB and supports		
		only incremental 24V encoders.		
	F	0–255		
P20.16	Frequency	When the function parameter is set to 0 or 1,	0	0
	division coefficient	frequency division of 1:1 is implemented.		
		0x0000–0xFFFF		
		Bit0: Enable/disable encoder input filter		
		0: No filter		
		1: Filter		
		Bit1: Encoder signal filter mode		
		0: Self-adaptive filter		
		1: Use <u>P20.18</u> filter parameter		
	Pulse filter	Bit2: Enable/disable encoder frequency-division		
P20.17		output filter	0x0033	0
	handling selection	0: No filter		
		1: Filter		
		Bit3: Enable/disable pulse reference		
		frequency-division output filter		
		0: No filter		
		1: Filter		
		Bit4: Enable/disable pulse reference filter		
		0: No filter		

Function code	Name	Description	Default	Modify
		1: Filter Bit5: Pulse reference filter mode (valid when		
		Bit4 is set to 1)		
		0: Self-adaptive filter		
		1: Use P20.19 filter parameter		
		Bit6: Frequency-divided output source setting		
		0: Encoder signals		
		1: Pulse reference signals		
		Bit7–15: Reserved		
	Encoder pulse	0–63		
P20.18	filter width	The filter time is <u>P20.18</u> *0.25µs. The value 0 or	2	0
		1 indicates 0.25µs.		
	Pulse reference	ulso reference 0–63		
P20.19	filter width	The filter time is <u>P20.19</u> *0.25us. The value 0 or	2	0
		1 indicates 0.25us.		
P20.20	Pulse number of	0–65535	1024	Ø
1 20.20	pulse reference	0-00000	1024	<u> </u>
	Enabling SM			
P20.21	angle	0–1	0	0
	compensation			
	Frequency point			
P20.22	of speed	0–630.00Hz	1.00Hz	0
1 20.22	measurement	Note: Valid only when <u>P20.12</u> =0.	1.00112	\bigcirc
	mode switchover			
	Angle			
P20.23	compensation	-200.0–200.0	100.0%	0
	coefficient			
	Motor pole pairs in			
P20.24	initial pole angle	1–128	2	O
	autotuning			

P21 group—Position control

Function code	Name	Description	Default	Modify
P21.00	Positioning mode	Ones place: Control mode selection (only for closed-loop vector control) 0: Speed control 1: Position control	0x0000	0

Function code	Name	Description	Default	Modify
		Tens place: Position command source		
		0: Pulse string, using PG card terminal (A2, B2)		
		pulse giving signal for position control		
		1: Digital position, using the setting of P21.17 for		
		position control, while the positioning mode can		
		be set through <u>P21.16</u> .		
		2: Positioning of photoelectric switch during		
		stop. When a terminal receives a photoelectric		
		switch signal (selection terminal function 43), the		
		VFD starts positioning for stop, and the stop		
		distance can be set through <u>P21.17</u> .		
		Hundred place: Position feedback source		
		0: Encoder signals		
		1: Reserved		
		Thousands place: Servo mode		
		Bit0: Position deviation mode		
		0: No deviation		
		1: With deviation		
		Bit1: Enable/disable servo		
		0: Disable (The servo can be enabled by		
		terminals.)		
		1: Enable		
		Bit2–Bit7: Reserved		
		Note: In the pulse string or spindle		
		positioning mode, the VFD enters the servo		
		operation mode when there is a valid servo		
		enabling signal. If there is no servo enabling		
		signal, the VFD enter the servo operation		
		mode only after it receives a forward running		
		or reverse running command.		
		Ones place: Pulse mode		
		0: A/B quadrature pulse; A leads B		
	Pulse command	1: A is PULSE and B is SIGN		
P21.01	mode	If channel B is of low electric level, the edge	0x0000	O
	mode	counts up; if channel B is of high electric level,		
		the edge counts down.		
		2: A is positive pulse		

Function code	Name	Description	Default	Modify
code		Channel A is positive pulse; channel B needs no wiring 3: A/B dual-channel pulse; channel A pulse edge counts up, channel B pulse edge counts down Tens place: Pulse direction Bit0: Set pulse direction 0: Forward 1: Reverse Bit1: Set pulse direction by running direction 0: Disable, and BIT0 is valid 1: Enable Hundreds place: Frequency multiplication selection for pulse +direction (reserved) 0: No frequency multiplication 1: Frequency multiplication 1: Frequency multiplication 1: Frequency multiplication 1: Frequency multiplication 1: Inousands place: Pulse control selection Bit0: Pulse filter selection 0: Inertia filter 1: Moving average filter Bit1: Overspeed control 0: No control 1: Control		
P21.02	APR gain 1	The two automatic position regulator	20.0	0
P21.03	APR gain 2	(APR) gains are switched based on the switching mode set through <u>P21.04</u> . When the spindle orientation function is used, the gains are switched automatically, regardless of the setting of <u>P21.04</u> . <u>P21.03</u> is used for dynamic running, and <u>P21.02</u> is used for maintaining the locked state. Setting range: 0.0–400.0	30.0	0
P21.04	APR gain switchover mode	Used to select the mode for switching between APR gains. To use torque command-based switching, you need to set <u>P21.05</u> ; and to use speed	0	0

Function code	Name	Description	Default	Modify
coue		command-based switching, you need to		
		set P21.06.		
		0: No switchover		
		1: Torque command		
		2: Speed command		
		3–5: Reserved		
	APR gain			
	switchover	Setting range: 0.0–100.0% (of the motor rated		
P21.05	threshold in	torque)	10.0%	0
	torque command	. ,		
	APR gain			
Ba / a a	switchover		10.00/	
P21.06	threshold in speed	0.0–100.0% (of the motor rated speed)	10.0%	0
	commmand			
	Smooth filter	Smooth filter coefficient for APR gain		
P21.07	coefficient for gain	switchover.	5	0
	switchover	Setting range: 0–15		
		Position regulator output Value. When the APR		
		output limit is 0, the APR is invalid, and no		
P21.08	APR output limit	position control can be performed, however,	20.0%	0
121.00		speed control is valid.	20.070	0
		Setting range: 0.0–100.0% (of max. output		
		frequency P00.03)		
		When the position deviation is less than		
	Positioning	P21.09, and the duration is greater than		
P21.09	completion zone	P21.10, positioning completion signal will	10	0
		be outputted.		
	Data atian ting (Setting range: 0–1000		
D24.40	Detection time for	0.0.1000.0mg	10.0	
P21.10	positioning	0.0–1000.0ms	10.0ms	0
	completion	Electronic gear ratio, used to adjust the		
	Numerator of	corresponding relation between position		
P21.11	position command	command and actual running displacement.	1000	0
	ratio	Setting range: 1–65535		
	Denominator of			
P21.12	position command	Setting range: 1–65535	1000	0

Function code	Name	Description	Default	Modify
	ratio			
D04.40	Position	0.00–120.00%	100.00	
P21.13	feedforward gain	For pulse string reference only (position control)	100.00	0
P21.14	Position feedforward filter time constant	0.0–3200.0ms For pulse string reference only (position control)	3.0ms	0
	Position	Position feedforward filter time constant during		
P21.15	command filter	the pulse string positioning.	0.0ms	O
	time constant	0.0–3200.0ms		
P21.16	Digital positioning mode	Bit 0: Positioning mode 0: Relative position 1: Absolute position (Origin mode. This function is reserved.) Bit 1: Cyclic positioning setting. You can enable positioning through a terminal (function 55) or choose automatic cyclic positioning. Terminals support only the enabling of continuous positioning, and automatic cyclic positioning can be set to cyclic positioning or reciprocating positioning through bit 2 of P21.16. 0: Terminal-based cyclic positioning 1: Automatic cyclic positioning Bit 2: Cyclic mode 0: Continuous 1: Reciprocating (support the automatic cyclic positioning) Bit 3: P21.17 digital setting mode. You can select incremental or position type. The incremental type indicates that P21.17 needs to be conducted again after each positioning is enabled. When the position reference bit command is enabled, the displacement is set through P21.17. When P21.17 is changed, new position is be positioned automatically. 0: Incremental 1: Position type (do not support the continuous mode) Bit 4: Origin searching mode. This function is	0	0

Function code	Name	Description	Default	Modify
couc		reserved.		
		0: Search for the origin only for once		
		1: Search for the origin in every time of running		
		Bit 5: Origin calibration mode. This function is		
		reserved.		
		0: Calibration in real time		
		1: One-time calibration		
		Bit 6: Positioning completion signal setting. You		
		can set the positioning completion signal in the		
		pulse or electrical level form. The positioning		
		completion signal is valid in the positioning		
		completion signal holding time set in P21.25.		
		0: Valid in the positioning completion signal		
		holding time (P21.25)		
		1: Always valid		
		Bit 7: First positioning setting. You can set		
		whether the first positioning is performed when a		
		running command is received. If no, the first		
		positioning is performed only after the		
		positioning enabling terminal or automatic cyclic		
		positioning is enabled.		
		0: Disable		
		1: Enable		
		Bit 8: Positioning enabling signal setting (for		
		terminal-based cyclic positioning). In the pulse		
		form, after positioning is completed or in the first		
		positioning, the jump edge of the positioning		
		enabling terminal needs to be detected for		
		performing positioning. In the electrical level		
		mode, after positioning is completed or in the		
		first positioning, positioning is performed after it		
		is detected that the positioning enabling terminal		
		is switched on.		
		0: Pulse signal		
		1: Electrical level signal		
		Bit 9: Position source		
		0: Set by <u>P21.17</u>		
		1: PROFIBUS/CANopen communication		

Function code	Name	Description	Default	Modify
		Bit 10: Indicates whether to save encoder pulse count value at power-off 0: No 1: Yes Bit11: Reserved Bit 12: Positioning curve setting (Reserved) 0: Straight line 1: S curve		
P21.17	Position set in digital mode	Used to set the position for digital positioning. Actual position= <u>P21.17</u> x <u>P21.11/P21.12</u> 0–65535	0	0
P21.18	Positioning speed setting	0: Set by <u>P21.19</u> 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: High-speed pulse HDIB	0	0
P21.19	Positioning speed set in digital mode	0–100.0% (of the max. frequency)	20.0%	0
P21.20	Positioning ACC time	Used to set the ACC/DEC time in the positioning process.	3.00s	0
P21.21	Positioning DEC time	Positioning ACC time means the time needed if the VFD speeds up from 0Hz to the max. output frequency (<u>P00.03</u>). Positioning DEC time means the time needed if the VFD speeds down from the max. output frequency (<u>P00.03</u>) to 0Hz. <u>P21.20</u> setting range: 0.01–300.00s <u>P21.21</u> setting range: 0.01–300.00s	3.00s	0
P21.22	Positioning holding time	Used to se the holding time after the destination position is reached. Setting range: 0.000–60.000s	0.100s	0
P21.23	Origin searching speed	0.00–50.00Hz	2.00Hz	0
P21.24	Origin bias	0–65535	0	0
P21.25	Positioning completion signal	Time for holding the positioning completion signal. This parameter is also valid for the	0.200s	0

Function code	Name	Description	Default	Modify
	holding time	positioning in spindle orientation.		
	-	Setting range: 0.000–60.000s		
504.00	Pulse	P21.26: -9999-32767		0
P21.26	superposition	<u>P21.27</u> : 0–3000.0/ms	0	0
	Pulse	The function is valid in the pulse speed		
P21.27	superposition rate	reference (P00.06=12) or pulse position mode	8.0/ms	0
		(<u>P21.00</u> =1).		
		1. Input terminal function 68 (Enable the pulse		
		superimposition)		
		When the rising edge of the terminal is detected,		
		add the value set in <u>P21.26</u> to the set pulse		
		value, and compensate to the pulse reference		
		channel based on the pulse superposition speed		
		set in <u>P21.27</u> .		
		2. Input terminal function 67 (pulse increase)		
		When the terminal is valid, superpose the pulse		
		value to the pulse reference channel based on		
		the pulse superposition speed set in P21.27.		
		Note: Terminal filter <u>P05.09</u> may affect the		
		actual superposed value.		
		For example:		
	ACC/DEC time	P21.27=1.0/ms		-
P21.28	after pulse	<u>P05.05</u> =67	5.0s	0
	inhibition	When the S5 ternimal input signal is 0.5 s, the		
		actual superposed pulses = 500 pulses.		
		3. Input terminal function 69 (pulse decrease)		
		The time sequence of this function is same as		
		the above. The difference is that this terminal is		
		the pulse number that is superposed		
		degressively.		
		Note: The pulses mentioned above are		
		superposed to A2 and B2 of pulse reference		
		channel. Functions such as filtering and		
		electronic gear are still valid for superposed		
		pulses.		
		4. Output terminal function 28 (during pulse		
		superposition)		
		During the pulse superposition, the output		

Function code	Name	Description	Default	Modify
		terminal is valid. After the pulse superposition is completed, the output terminal is invalid.		
P21.29	Speed feedforward filtering time constant (pulse string-based speed mode)	Filter time constant detected by the pulse string when the speed reference source is set to the pulse string (<u>P00.06</u> =12 or <u>P00.07</u> =12). Setting range: 0–3200.0ms	10.0ms	0
P21.30	Numerator of the 2nd command ratio	1–65535	1000	0

P22 group—Spindle positioning

P22.00 p	Spindle positioning mode selection	Bit0: Enable spindle positioning 0: Disable 1: Enable Bit1: Select spindle positioning reference point 0: Z pulse input 1: S2/S3/S4 terminal input Bit2: Search for reference point 0: Search the reference point only once 1: Search the reference point every time Bit3: Enable reference point calibration 0: Disable 1: Enable Bit4: Positioning mode selection 1 0: Set direction positioning Bit5: Positioning mode selection 2 0: Forward positioning 1: Reverse positioning 1: Reverse positioning Bit6: Zeroing command selection 0: Electric level mode 1: Pulse mode Bit7: Reference point calibration mode 0: Calibrate at the first time	0	0

Function	Name	Description	Default	Modify
code	Humo		Donaun	meany
		1: Calibration in real time		
		Bit8: Action selection after zeroing signal		
		cancellation (electric level type)		
		0: Switch to speed mode		
		1: Position lock mode		
		Bit9: Positioning completion signal selection		
		0: Electrical level signal		
		1: Pulse signal		
		Bit10: Z pulse signal source		
		0: Motor		
		1: Spindle		
		Bit11–15: Reserved		
		During spindle orientation, the speed of the		
		position point of orientation will be searched,		
P22.01	22.01 Speed of spindle orientation	and then it will switch over to position control	10.00Hz	0
	onentation	orientation.		
		Setting range: 0.00–100.00Hz		
		DEC time of spindle orientation.		
		Spindle orientation deceleration time		
P22.02	DEC time of	means the time needed for the VFD to	2.00	0
P22.02	spindle orientation	decelerate from Max. output frequency	3.0s	0
		(<u>P00.03</u>) to 0Hz.		
		Setting range: 0.0–100.0s		
	Spindle zeroing	You can select four spindle zeroing positions by		
P22.03	Spindle zeroing position 0	terminals (functions 46 and 47).	0	0
	position o	Setting range: 0–39999		
P22.04	Spindle zeroing position 1	Setting range: 0–39999	0	0
P22.05	Spindle zeroing position 2	Setting range: 0–39999	0	0
	Spindle zeroing			
P22.06	position 3	Setting range: 0–39999	0	0
	Spindle	You can select seven spindle scale-division		
P22.07	scale-division	angles by terminals (functions 48, 49, and 50).	15.00	0
	angle 1	Setting range: 0.00–359.99		
	Spindle			
P22.08	scale-division	Setting range: 0.00–359.99	30.00	0
	angle 2			

Function code	Name	Description	Default	Modify
	Spindle			
P22.09	scale-division	Setting range: 0.00–359.99	45.00	0
	angle 3			
	Spindle			
P22.10	scale-division	Setting range: 0.00–359.99	60.00	0
	angle 4			
	Spindle			
P22.11	scale-division	Setting range: 0.00–359.99	90.00	0
	angle 5			
	Spindle			
P22.12	scale-division	Setting range: 0.00–359.99	120.00	0
	angle 6			
	Spindle			
P22.13	scale-division	Setting range: 0.00–359.99	180.00	0
	angle 7			
		Used to set the reduction ratio of the spindle and		
P22.14	Spindle drive ratio	the mounting shaft of the encoder.	1.000	0
		Setting range: 0.000–30.000		
		P22.15 is used to set spindle zero-point		
	Spindle zero-point	offset. If the selected spindle zero point		
P22.15	communication	is P22.03, the final spindle zero point is	0	0
	setting	the sum of <u>P22.03</u> and <u>P22.15</u> .		
		Setting range: 0–39999		
P22.16	Reserved	0–65535	0	0
P22.17	Reserved	0–65535	0	0
		Ones place: Enabling selection		
		0: Disable (This function can be enabled through		
		a terminal (configured with function 58)		
	Rigid tapping	1: Enable (internally)		
P22.18	selection	Tens place: Analog port selection	0x00	O
	Selection	0: Disable		
		1: AI1		
		2: AI2		
		3: AI3		
P22.19	Analog filter time	0.0ms–1000.0ms	1.0ms	0
1 22.13	of rigid tapping		1.0115	
P22.20	Max. frequency of	0.00–400.00Hz	50.00Hz	0

Function code	Name	Description	Default	Modify
	rigid tapping			
P22.21	Corresponding frequency of analog zero drift of rigid tapping	0.00–10.00Hz	0.00Hz	0
P22.22	Speed measuring method of pulse reference	0–2 0: By main control board 1: By PG card 2: Hybrid method	0	0
P22.23	Reserved	0–65535	0	
P22.24	Setting of encoder count value clearing	0–65535	0	0

P23 group—Vector control of motor 2

Function code	Name	Description	Default	Modify
P23.00	Speed-loop proportional gain 1	The parameters <u>P23.00</u> – <u>P23.05</u> are applicable only to vector control mode. Below the switching frequency 1 (<u>P23.00</u>), the speed-loop PI	20.0	0
P23.01	Speed-loop integral time 1	parameters are: <u>P23.00</u> and <u>P23.01</u> . Above the switching frequency 2 (<u>P23.05</u>), the speed-loop	0.200s	0
P23.02	Low-point frequency for switching	PI parameters are: <u>P23.03</u> and <u>P23.04</u> . PI parameters are obtained according to the linear change of two groups of parameters. See the	5.00Hz	0
P23.03	Speed-loop proportional gain 2	following figure: PI parameters (P23.00,P23.01)	20.0	0
P23.04	Speed-loop integral time 2		0.200s	0
P23.05	High-point frequency for switching	(P23.03,P23.04) P23.02 P23.05 Output frequency f The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop;	10.00Hz	0

Function code	Name	Description	Default	Modify
		however, if the proportional gain is too large or		
		integral time is too small, system oscillation and		
		overshoot may occur; if proportional gain is too		
		small, stable oscillation or speed offset may		
		occur.		
		PI parameters have a close relationship with the		
		inertia of the system. Adjust PI parameters		
		depending on different loads to meet various		
		demands.		
		P23.00 setting range: 0.0–200.0		
		P23.01 setting range: 0.000–10.000s		
		P23.02 setting range: 0.00Hz-P23.05		
		P23.03 setting range: 0.0–200.0		
		P23.04 setting range: 0.000–10.000s		
		<u>P23.05</u> setting range: <u>P23.02</u> – <u>P00.03</u> (Max.		
-		output frequency)		
P23.06	Speed-loop output	0–8 (corresponding to 0–2 ⁸ /10ms)	0	0
	filter			
	Electromotive slip			
P23.07	compensation	Slip compensation coefficient is used to adjust	100%	0
	coefficient of	the slip frequency of the vector control and		-
	vector control	improve the speed control accuracy of the		
	Braking slip	system. Adjusting the parameter properly can		
P23.08	compensation	control the speed steady-state error.	100%	0
1 20.00	coefficient of	Setting range: 50–200%	10070	Ŭ
	vector control			
	Current-loop	The two function codes impact the dynamic		
P23.09	proportional	response speed and control accuracy of the	1000	0
	coefficient P	system. Generally, you do not need to modify		
		the two function codes.		
	Current-loop	Applicable to SVC mode 0 (<u>P00.00</u> =0), SVC		
P23.10	integral coefficient	mode 1 (P00.00=1), and closed-loop vector	1000	0
	I	control mode (<u>P00.00</u> =3).		
		Setting range: 0–65535		
P23.11	Speed-loop	0–10.00s	0.00s	0
F23.11	differential gain	U-10.005	0.005	0
P23.12	High-frequency	In the closed-loop vector control mode	1000	0
F23.12	current-loop	(P00.00=3), when the frequency is lower than	1000	0

Function code	Name	Description	Default	Modify
	proportional	the current-loop high-frequency switching		
	coefficient	threshold (<u>P23.14</u>), the current-loop PI		
	High-frequency	parameters are <u>P23.09</u> and <u>P23.10</u> ; and when		
P23.13	current-loop	the frequency is higher than the current-loop	1000	0
	integral coefficient	high-frequency switching threshold, the		
		current-loop PI parameters are P23.12 and		
	Current-loop	<u>P23.13</u> .		
D00.44	high-frequency	P23.12 setting range: 0–65535	100.0%	0
P23.14	switching	P23.13 setting range: 0–65535	100.0%	0
	threshold	P23.14 setting range: 0.0–100.0% (of the max.		
		frequency)		

P24 group--Encoder of motor 2

Function code	Name	Description	Default	Modify
P24.00	Encoder type display	0: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat absolute encoder	0	•
P24.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one circle. Setting range: 0–60000	1024	O
P24.02	Encoder direction	Ones place: AB direction 0: Forward 1: Reverse Tens place: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward 1: Reverse	0x000	O
P24.03	Detection time of encoder offline fault Detection time of encoder offline fault.	Setting range: 0.0–10.0s	2.0s	0
P24.04	Detection time of	Detection time of encoder reversal fault.	0.8s	0

Function code	Name	Description	Default	Modify
	encoder reversal fault	Setting range: 0.0–100.0s		
P24.05	Filter times of encoder detection	Setting range: 0x00 –0x99 Ones place: Low-speed filter time, corresponding to 2 ^{(0–9)*125µs.} Tens place: High-speed filter times, corresponding to 2 ^{(0–9)*125µs.}	0x33	0
P24.06	Speed ratio between encoder mounting shaft and motor	You need to set the function parameter when the encoder is not installed on the motor shaft and the drive ratio is not 1. Setting range: 0.001–65.535	1.000	0
P24.07	Control parameters of SM	Bit0: Enable Z pulse calibration Bit1: Enable encoder angle calibration Bit2: Enable SVC speed measurement Bit3: Reserved Bit4: Reserved Bit5: Reserved Bit6: Enable the CD signal calibration Bit7: Reserved Bit8: Do not detect encoder faults during autotuning Bit9: Enable Z pulse detection optimization Bit10: Enable the initial Z pulse calibration optimization Bit12: Clear the Z pulse arrival signal after stop	0x3	0
P24.08	Enable Z pulse offline detection	0x00–0x11 Ones place: Z pulse detection 0: Disable 1: Enable Tens place: UVW pulse detection (for SM) 0: Disable 1: Enable	0x10	0
P24.09	Initial angle of Z pulse	Relative electric angle between the encoder Z pulse and the motor pole position. Setting range: 0.00–359.99	0.00	0
P24.10	Pole initial angle	Relative electric angle between the encoder position and the motor pole position. Setting range: 0.00–359.99	0.00	0

Function	Name	Description	Default	Modify
code				
P24.11	Autotuning pole initial angle	 0–3 1: Rotary autotuning (DC braking) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification) The pole initial angle obtained through rotary autotuning 1 is accurate. Rotary autotuning is recommended in most cases, in which the motor needs to be decoupled from the load or the motor load is light. 	0	0
P24.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	1	0
P24.13	CD signal zero offset gain	0–65535	0	0
P24.14	Encoder type selection	Ones place: Incremental encoder 0: without UVW 1: with UVW Tens place: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	O
P24.15	Speed measurement mode	0: Measuring speed by PG card/Measuring height by HDI 1: Locally measured through HDIA and HDIB. Only the 24V incremental encoders are supported. Note: HDI height measuring is implemented through the HDIA and HDIB and supports only incremental 24V encoders.	0	O
P24.16	Frequency division coefficient	0–255 When the function parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P24.17	Pulse filter handling selection	0x0000–0xFFFF Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode	0x0033	0

Function code	Name	Description	Default	Modify
		0: Self-adaptive filter		
		1: Use P24.18 filter parameter		
		Bit2: Enable/disable encoder frequency-division		
		output filter		
		0: No filter		
		1: Filter		
		Bit3: Enable/disable pulse reference		
		frequency-division output filter		
		0: No filter		
		1: Filter		
		Bit4: Enable/disable pulse reference filter		
		0: No filter		
		1: Filter		
		Bit5: Pulse reference filter mode (valid when		
		Bit4 is set to 1)		
		0: Self-adaptive filter		
		1: Use P24.19 filter parameter		
		Bit6: Frequency-divided output source setting		
		0: Encoder signals		
		1: Pulse reference signals		
		Bit7–15: Reserved		
		0–63		
P24.18	Encoder pulse filter width	The filter time is <u>P24.18</u> *0.25µs. The value 0 or	2	0
		1 indicates 0.25µs.		
	5	0–63		
P24.19	Pulse reference	The filter time is <u>P24.19</u> *0.25us. The value 0 or	2	0
	filter width	1 indicates 0.25us.		
DO 1 00	Pulse number of	0.05505	1001	
P24.20	pulse reference	0–65535	1024	O
	Enabling SM			
P24.21	angle	0–1	0	0
	compensation			
	Frequency point			
Dotor	of speed		4.0011	
P24.22	measurement	0–630.00Hz	1.00Hz	0
	mode switchover			
Da (a -	Angle		100.001	
P24.23	compensation	-200.0–200.0%	100.0%	0

E.

Function code	Name	Description	Default	Modify
	coefficient			
	Motor pole pairs in			
P24.24	initial pole angle	0–128	2	Ø
	autotuning			

P25 group---I/O card input functions

Function code	Name	Description	Default	Modify
P25.01	Function of S5		0	O
P25.02	Function of S6		0	O
P25.03	Function of S7		0	O
P25.04	Function of S8	Came on DOF	0	O
P25.05	Function of S9	Same as P05	0	O
P25.06	Function of S10		0	O
P25.07	Function of S11		0	O
P25.08	Function of S12		0	O
P25.10	Expansion card input terminal polarity	0x000-0x1FF BIT7 BIT6 BIT5 BIT4 S12 S11 S10 S9 BIT3 BIT2 BIT1 BIT0 S8 S7 S6 S5 0x000-0x1FF (0: Disable. 1: Enable) BIT0: S5 virtual terminal BIT1: S6 virtual terminal	0x000	0
P25.11	Expansion card virtual terminal setting	BIT2: S7 virtual terminal BIT3: S8 virtual terminal BIT4: S9 virtual terminal BIT5: S10 virtual terminal BIT6: S11 virtual terminal BIT7: S12 virtual terminal BIT8: HDI3 virtual terminal	0x000	0
P25.14	S5 switch-on delay	Used to specify the delay time corresponding to	0.000s	0
P25.15	S5 switch-off delay	the electrical level changes when the programmable input terminals switch on or	0.000s	0
P25.16	S6 switch-on delay	switch off.	0.000s	0

Function	Name	Description	Default	Modify
code	Name	Description	Delault	wouny
P25.17	S6 switch-off delay	Si electrical level	0.000s	0
P25.18	S7 switch-on	Si valid invalid ///, valid////////////////////////////////////	0.000s	0
P25.19	delay S7 switch-off	delay delay Setting range: 0.000–50.000s	0.000s	0
P25.20	delay S8 switch-on delay		0.000s	0
P25.21	S8 switch-off delay		0.000s	0
P25.22	S9 switch-on delay		0.000s	0
P25.23	S9 switch-off delay		0.000s	0
P25.24	S10 switch-on delay		0.000s	0
P25.25	S10 switch-off delay		0.000s	0
P25.26	S11 switch-on delay		0.000s	0
P25.27	S11 switch-off delay		0.000s	0
P25.28	S12 switch-on delay		0.000s	0
P25.29	S12 switch-off delay		0.000s	0
P25.30	AI3 lower limit	Used to define the relationship between the	0.00V	0
P25.31	Corresponding setting of AI3 lower limit	analog input voltage and its corresponding setting. When the analog input voltage exceeds the range from the upper limit to the lower limit, the upper limit or lower limit is used.	0.0%	0
P25.32	AI3 upper limit	When the analog input is current input, 0mA–20mA current corresponds to 0V–10V	10.00V	0
P25.33	Corresponding setting of AI3 upper limit	voltage. In different applications, 100.0% of the analog setting corresponds to different nominal values.	100.0%	0

Function code	Name	Description	Default	Modify
P25.34	AI3 input filter time	See the descriptions of each application section for details. The following figure illustrates the cases of several settings:	0.030s	0
P25.41	AI3 input signal type	Range: 0–1 0: Voltage 1: Current	0	0
P25.42	S-terminal power signal selection (S terminal on I/O card 2)	0–1 0: DC (24–48V DC) 1: AC (24–48V AC)	0	Ø

P26 group---I/O card output functions

Function code	Name	Description	Default	Modify
P26.02	Y2 output		0	0
P26.04	RO3 output		0	0
P26.05	RO4 output		0	0
P26.12	Expansion card	0x0000–0x7FF	0x000	0

Function code	Name	Description	Default	Modify
	output terminal polarity	RO10, RO9RO3, HDO2,Y3, Y2 in sequence		
P26.15	Y2 switch-on delay	Used to specify the delay time corresponding to	0.000s	0
P26.16	Y2 switch-off delay	the electrical level changes when the programmable output terminals switch on or	0.000s	0
P26.19	RO3 switch-on delay	switch off.	0.000s	0
P26.20	RO3 switch-off delay	Y valid	0.000s	0
P26.21	RO4 switch-on delay	^{delay} delay Setting range: 0.000–50.000s	0.000s	0
P26.22	RO4 switch-off delay		0.000s	0
P26.35	AO2 output	Same as the description for P06.14	0	0
P26.38	AO2 output lower limit	Used to define the relationship between the output value and analog output. When the	0.0%	0
P26.39	AO2 output corresponding to lower limit	output value exceeds the allowed range, the output uses the lower limit or upper limit. When the analog output is current output, 1mA	0.00V	0
P26.40	AO2 output upper limit	equals 0.5V. In different cases, the corresponding analog	100.0%	0
P26.41	AO2 output corresponding to upper limit	output of 100% of the output value is different.	10.00V	0
P26.42	AO2 output filter time	0.0% 100.0% Setting range of P26.38: -300.0%–P26.40 P26.39 setting range: 0.00V–10.00V Setting range of P26.40: P26.38–300.0% P26.41 setting range: 0.00V–10.00V Setting range of P26.42: 0.000s–10.000s	0.000s	0

Function code	Name	Description	Default	Modify
	Master/slave	0: Master/slave control is invalid.		
P28.00	mode	1: The local device is the master.	0	O
	modo	2: The local device is the slave.		
	Master/slave	0: CAN		
P28.01	communication	1: Reserved	0	O
	data selection			
		Ones place: Master/slave running mode		
		selection		
		0: Master/slave mode 0		
		The master and slave use speed control, with		
		power balanced through droop control.		0
		1: Master/slave mode 1		
		(The master and slave must be in the same type		
		of vector control. When the master is in speed		
		control, the slave is forced into torque control.)		
		2: Master/slave mode 2		
		The slave switches from speed mode		
		(master/slave mode 0) to torque mode		
		(master/slave mode 1) at a frequency point.		
		3: Master/slave mode 3 (Reserved)		
	NA t	(Both the master and slave adopt speed control,		
P28.02	Master/slave	and the slave performs power balance	0x116	
	control mode	depending on the speed loop integral result of		
		the master.)		
		4: Closed-loop master/slave mode (Master/slave		
		mode 4)		
		The master and slave must be equipped with		
		encoders. The master and slave adopt speed		
		control, using position pulse difference for speed		
		correction.		
		5: Master/slave mode 5		
		(Both the master and slave adopt closed-loop		
		speed control, and the slave performs power		
		balance depending on the speed loop of the		
		master.)		
		6: Master/slave mode 6		
		Used for master/slave height transfer, in which		

Function code	Name	Description	Default	Modify
0000		the master sends the measured height to the		
		slave.		
		(You can check P94.05 to obtain the height sent		
		from the master and P94.32 to obtain the height		
		sent to the slave.)		
		Tens place: Slave start command source		
		0: Master		
		1: Determined by <u>P00.01</u>		
		Hundreds place: Whether to enable		
		master/slave to send/receive data		
		0: Enable		
		1: Disable		
		It is a percentage of the master ramp frequency.		
		When the master and slave are different in the		
P28.03	Slave speed gain	DEC ratio: 0.0–500.0%	100.0%	0
		When the master and slave are the same in the		
		DEC ratio: 100.0%		
		It is a percentage of the set frequency of the		
		master.		
P28.04	Slave torque gain	When the master and slave are different in the	100.0%	0
F 20.04		motor power: 0.0–500.0%	100.078	0
		When the master and slave are the same in the		
		motor power: 100.0%		
	Frequency point			
	for switching			
	between speed			
P28.05	mode and torque	0.00–10.00Hz	5.00Hz	0
	mode in			
	master/slave			
	mode 2			
P28.06	Number of slaves	0–15	1	O
	Master/slave			
	transmission unit			
P28.07	pulse ratio for	0.00–100.00	1.00	0
	position			
	synchronization			
P28.08	Position	0–50000	50	0
1 20.00	synchronization	When the position difference is greater than	50	<u> </u>

Function code	Name	Description	Default	Modify
	deviation deadzone setting	P28.08, correction on the slave is valid.		
P28.09	Position synchronization deviation threshold	0–50000 When the position difference between the master and slave is greater than <u>P28.09</u> , a master/slave position fault (ELS) is reported.	1000	0
P28.10	Position synchronization regulator output limit	0.0–100.0%	5.0%	0
P28.11	Position synchronization pulse count reset method	 0-1 0: Automatic During stop, the position synchronization pulse count is automatically reset. 1: Terminal based If the input terminal selects the position synchronization pulse count reset function, the pulse count is automatically reset when there is signal input. 	0	O
P28.12	Position synchronization proportional coefficient	0.000–10.000	0.005	0
P28.13	Position synchronization integral time	0.01–80.00	8.00s	0
P28.14	Position synchronization filtering time	0.00–10.00	0.05s	0
P28.15	Enabling the slave speed deviation window	0–1 0: Disable 1: Enable When the slave adopts the torque control mode, the speed deviation monitoring function can be enabled.	0	0
P28.16	Slave positive speed deviation	0.00–50.00Hz When the actual speed is higher than the given	5.00Hz	0

Function code	Name	Description	Default	Modify
	window upper limit	speed, if the actual speed is higher than (Given speed + $\underline{P28.16}$) and exceeds this upper limit, the speed has to be adjusted.		
P28.17	•	0.00-50.00Hz When the actual speed is lower than the given speed, if the actual speed is lower than (Given speed - <u>P28.17</u>) and the window lower limit, the speed has to be adjusted.	5.00Hz	0
P28.18	Slave rotation speed regulation coefficient Kb	0–50000 Applicable only in master/slave mode 5.	100	0
P28.19	Rotation speed difference compensation coefficient Kc (Reserved)	0–50000 Applicable only in master/slave mode 5, in which there are only one master and one slave.	100	0
P28.20	Rotation speed difference compensation target setting (Reserved)	0–2 0: No 1: Compensate both the master and slave 2: Compensate only the slave	0	0

P85 group-Anti-sway control

Function code	Name	Description	Default	Modify
P85.00	Enabling anti-sway	0–1 0: Disable 1: Enable Note: The anti-sway function can be enabled by setting P85.00=1 or through terminal function selection.	0	O
P85.01	Pendulum reduction mode	0–3 0: Pendulum reduction mode 0 1: Pendulum reduction mode 1 2: Pendulum reduction mode 2 3: Pendulum reduction mode 3 Note: For the pendulum reduction duration, Pendulum reduction mode 3 > Pendulum	0	O

E.

Function code	Name	Description	Default	Modify
		reduction mode 2 > Pendulum reduction mode 1 > Pendulum reduction mode 0		
P85.02	K coefficient (Damping ratio calculation)	0–1000	100	O
P85.03	Height (rope length) compensation value	0.00–30.00m	0.00	O
P85.04	Gear switchover filtering delay	0.000–10.000s	0.000	0

P86 group—Slewing control

Function code	Name	Description	Default	Modify
P86.00	Curve entrance frequency	1.00–25.00HZ	8.00HZ	0
P86.01	Curve coefficient	10–100	70	O
P86.02	Stop torque hold time 1	1.0-50.0s	16.0s	0
P86.03	Stop torque hold time 2	1.0-50.0s	6.0s	0
P86.04	Stop comparison frequency	0.00–50.00HZ The value 0.00Hz indicates no use. During stop, if the frequency is lower than P86.04, the low speed is valid.	0.00HZ	O
P86.05	Low-speed segment curve selection	 0–1 Used when the curve mode P01.05=2 is used. When the stop frequency is lower than P86.04 (low-speed function is valid): 0: The low-speed segment curve uses the time specified by P86.03. 1: The low-speed segment does not use the curve manner but uses the straight line manner. 	0	O
P86.06	Enabling discontinuous curves	0–1 0: Continuous 1: Discontinuous	0	O
P86.08	Gear switchover	0.0–30.0s	10.0s	0

Function code	Name	Description	Default	Modify
	ACC curve time			
P86.09	ACC curve entrance frequency ratio of gear switchover	0–100% Relative to the set frequency	90%	Ø
P86.10	Gear switchover DEC curve time	0.0–30.0s The value 0 indicates no use of gear switchover curves.	0.0s	0
P86.11	DEC curve entrance frequency ratio of gear switchover	0.0–50.0% Relative to the rated frequency	8.0%	Ø
P86.12	Direction change switchover mode selection	0: Normal mode 1: Quick switchover mode 1 (single tap-braking)	0	Ø
P86.13	Direction change switchover basis DEC time	0.0–50.0s	8.0s	0
P86.14	Lagging value of direction change switchover basis time	100%500% (Used together with multi-step speed running)	100%	0
P86.15	Direction change switchover retaining frequency	0.00–15.00HZ	3.50Hz	0
P86.16	Hold time 1 of direction change switchover frequency	0.000–50.000s	4.000s	0
P86.17	Hold time 2 of direction change switchover frequency	0.000–50.000s	3.000s	0
P86.18	Direction change switchover comparison	0.00–50.00HZ A non-zero value indicates enabling. During direction change switchover, if the	0.00Hz	Ø

Function code	Name	Description	Default	Modify
	frequency	entrance point is lower than P86.18, P86.17 is used.		
P86.21	Enabling reverse-rotation braking	 0-2 If this function is enabled, the reverse-gear stop DEC time is used during reverse-gear stop. 0: Disable 1: Enable. Reverse-rotation braking is used as usual. 2: Enable. The retaining frequency is added during reverse-rotation braking. That is, if the frequency is higher than P86.23 when reverse braking is valid, P86.25 is kept for P86.24. 	0	Ø
P86.22	Reverse-rotation braking duration	0–50.0s	5.0s	0
P86.23	Reverse-rotation braking comparison frequency	0.00–50.00HZ	30.00Hz	O
P86.24	Reverse-rotation braking retaining frequency hold time	0.000–50.000s	2.000s	0
P86.25	Reverse-rotation braking retaining frequency		15.00Hz	O

P89 group--Parameters of motor 3

Function code	Name	Description	Default	Modify
P89.00	Type of motor 3	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0	0
P89.01	Rated power of AM 3	0.1–3000.0kW	Model depended	O
P89.02	Rated frequency of AM 3	0.01Hz– <u>P00.03(</u> Max. output frequency)	50.00Hz	0
P89.03	Rated speed of	1–36000rpm	Model	O

Function code	Name	Description	Default	Modify
	AM 3		depended	
P89.04	Rated voltage of AM 3	0–1200V	Model depended	0
P89.05	Rated current of AM 3	0.8–6000.0A	Model depended	O
P89.06	Stator resistance of AM 3	0.001–65.535Ω	Model depended	0
P89.07	Rotor resistance of AM 3	0.001–65.535Ω	Model depended	0
P89.08	Leakage inductance of AM 3	0.1–6553.5mH	Model depended	0
P89.09	Mutual inductance of AM 3	0.1–6553.5mH	Model depended	0
P89.10	No-load current of AM 3	0.1–6553.5A	Model depended	0
P89.11	Magnetic saturation coefficient 1 of	0.0–100.0%	80.0%	0
P89.12	iron core of AM 3 Magnetic saturation coefficient 2 of iron core of AM 3	0.0–100.0%	68.0%	0
P89.13	Magnetic saturation coefficient 3 of iron core of AM 3	0.0–100.0%	57.0%	0
P89.14	Magnetic saturation coefficient 4 of iron core of AM 3	0.0–100.0%	40.0%	0
P89.15	Rated power of SM 3	0.1–3000.0kW	Model depended	O
P89.16	Rated frequency of SM 3	0.01Hz–P00.03 (Max. output frequency)	50.00Hz	0
P89.17	Number of pole	1–128	2	O

Function code	Name	Description	Default	Modify
	pairs of SM 3			
P89.18	Rated voltage of SM 3	0–1200V	Model depended	0
P89.19	Rated current of SM 3	0.8–6000.0A	Model depended	0
P89.20	Stator resistance of SM 3	0.001–65.535Ω	Model depended	0
P89.21	Direct-axis inductance of SM 3	0.01–655.35mH	Model depended	0
P89.22	Quadrature-axis inductance of SM 3	0.01–655.35mH	Model depended	0
P89.23	Counter-emf constant of SM 3	0–10000V	300	0
P89.24	Initial pole position of SM 3 (reserved)	0-0xFFFF	0x0000	•
P89.25	Identification current of SM 2 (reserved)	0%–50% (of the motor rated current)	10%	•
P89.26	Overload protection of motor 3	0: No protection 1: Common motor (with low-speed compensation) 2: Frequency-variable motor (without low-speed compensation)	2	O
P89.27	Overload protection coefficient of motor 3	20.0%–120.0%	100.0%	0
P89.28	Power display calibration coefficient of motor 3	0.00–3.00	1.00	0
P89.29	Parameter display of motor 3	0: Display by motor type 1: Display all	0	0
P89.30	System inertia of motor 3	0–30.000kgm ²	0.000	0

P90 group—Functions special for cranes

Function code	Name	Description	Default	Modify
	Hoisting	0–18		
P90.00	application macro	0: Common application mode	0	O
	setting	1: Lifting mode 1 (in open-loop vector control)	-	
P90.01		 2: Lifting mode 2 (in closed-loop vector control) 3: Horizontal moving mode (in space voltage vector control) 4: Tower crane slewing mode 5: Conical motor application mode 6: User-defined application macro 1 (when P90.02=1) 7: User-defined application macro 2 (when P90.02=2) 8: User-defined application macro 3 (when P90.02=3) 9: Lifting mode 3 (in space voltage vector 	0	0
P90.02	User-defined application macro setting	 0-3 1: Enter the settings of user-defined application macro 1 2: Enter the settings of user-defined application macro 2 3: Enter the settings of user-defined application macro 3 	0	0
P90.03	Method for terminals to switch application	0–5	0	O

Function code	Name	Description	Default	Modify
code	macros	When the S terminal selects function 35 and takes effect, and P90.03=1, the macro parameter is switched from P90.00 to P90.01, and motor parameters are automatically switched. 2: Switch from motor 1 to motor 3 When the S terminal selects function 88 and takes effect, and P90.03=2, the macro parameter is switched from P90.00 to P90.01, and motor parameters are automatically switched. 3: Switch from the master to the slave When the S terminal selects function 72 and takes effect, and P90.03=3, the macro parameter is switched from P90.00 to P90.01, and the master/slave switchover is automatically performed. 4: Switch from the salve to the master When the S terminal selects function 71 and takes effect, and P90.03=4, the macro parameter is switched from P90.00 to P90.01, and the master/slave switchover is automatically performed. 5: Switch to SVC1 control (open-loop vector control 1) When P90.03=5, P90.00 must be 2, while P90.01 must be 1; alternatively, P90.00 must be 11, while P90.01 must be 12. Only control mode can be switched, and the S terminal selects		
P90.04	Enabling brake-oriented logic	function 62 and takes effect. 0–1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0	0
P90.05	Enabling forward torque for reverse-running start/stop	0x00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable (The reverse-running start direction complies	0x00	0

Function code	Name	Description	Default	Modify
		with the command.) 1: Enable (The reverse-running start direction is always the forward-running direction.)		
		direction and then runs in reverse direction, so as to ensure enough torque to drive the load.		
P90.06		Graded reference is a speed reference method for hoisting applications. Graded reference	0.0%	0
P90.07	Graded multi-step	supports the graded operating lever mode and graded remote-control mode. Graded reference	0.0%	0
P90.08		can implement 6-step speeds by combing the five graded multi-step reference terminals. The	0.0%	0
P90.09	Graded multi-step	combination methods are as follows: Graded reference terminal	0.0%	0

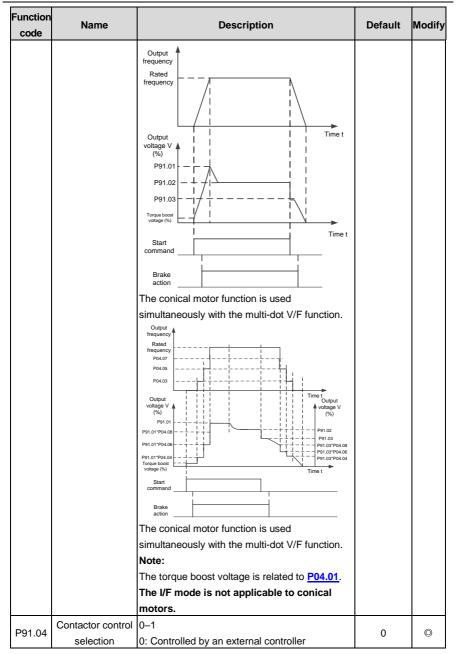
Function code	Name			I	Descr	iption			Default	Modify
P90.10	Graded multi-step speed reference 4	Trml 1	Trml 2	Trml 3	Trml 4	Trml 5	Speed setting	Code	0.0%	0
	speed reference 4	OFF	OFF	OFF	OFF	OFF	Graded setting 0	<u>P90.06</u>		
		ON	OFF	OFF	OFF	OFF	Graded setting 1	<u>P90.07</u>		
		ON	ON	OFF	OFF	OFF	Graded setting 2	<u>P90.08</u>		
		ON	ON	ON	OFF	OFF	Graded setting 3	<u>P90.09</u>		
		ON	ON	ON	ON	OFF	Graded setting 4	<u>P90.10</u>		
		ON	ON	ON	ON	ON	Graded setting 5	<u>P90.11</u>		
P90.11	Graded multi-step speed reference 5	speed P25, w speed (<u>P00.0</u> <u>P90.00</u> <u>P90.11</u> Note: grade	settin /hich c s are s 3: ma 5, P90 _ settir The n can b	g term can se specifi x. freq .07, P ng ran nulti-s pe clos	inals a lect fu ed by juency <u>90.08</u> ge: 0.0 step so sed of	are sp nction <u>P90.0</u> /). , <u>P90.(</u>)%–1(o%–1(otting:	The mult ecified by s 77–8. 1 <u>6–P90.11</u> 09, <u>P90.1</u> 00.0% s of a hig er the mare close	P05 or The 0, 0, her ulti-step	0.0%	0
Baa 4 a	Forward brake	Brake	-							
P90.12	release current	FWD/REV	Stop		Sta	rt	Stop		0.0%	0
P90.13	Reverse brake release current	command FWD			2				0.0%	0
P90.14	Forward brake release torque	output frequency FWD brake release frequency			FWD brake c	enance frequen during DEC losing frequency			0.0%	0
P90.15	Reverse brake release torque	Brake closing command	Close			Release		Close	0.0%	0
P90.16	Forward brake release frequency	REV output frequency	REV brake release frequency		<u>\</u>	EV brake closing frequency			3.00Hz	0
P90.17	Reverse brake release frequency	Brake	-	verificăti 		Maintenance equency during DEC Release			3.00Hz	0
P90.18	Forward brake closing frequency	feedback signal		e i Iose i		Rel	lease	Close	3.00Hz	0
P90.19	Reverse brake closing frequency	Brake action T1: Dela T2: Dela T5: Dela T6: Dela	w after forward	d brake release I brake release P9 brake release P9 orake release P9	0.22 T4 D	elay before forw elay after forwai elay before reve elay after rever	ard brake closing P90.24 rd brake closing P90.26 rse brake closing P90.25 e brake closing P90.27	· ·	3.00Hz	0
P90.20	Delay before forward brake	Use fo	ntenance freque	ncy hold time du	aring DEC P90.25	1	quence a	S	0.300s	0

Function	Name	Description	Default	Modify
code	release	example:		
	Delay before	Start: When the VFD is in standby state, the		
P90.21	reverse brake	brake output signal is closed. After receiving the	0.000s	0
1 00.21	release	running command, the VFD accelerates with the	0.0000	Ŭ
	Delay after	v		
P90.22	forward brake	target frequency <u>P90.16</u> . In addition, the VFD starts torque verification, if the verification is OK	0.300s	0
F 90.22	release	•	0.0003	0
	Delay after	(condition: output current>= $\underline{P90.12}$) (it is		
P90.23	reverse brake	<u>P90.13</u> in reverse running) and output torque >=	0.000s	0
F 90.23	release	P90.14 (it is P90.15 in reverse running), output	0.0005	0
		frequency is at least equal to <u>P90.16</u> (it is		
P90.24	Delay before forward brake	<u>P90.17</u> in reverse running), the delay before	0.300s	0
P90.24		forward brake release starts, and the VFD	0.3008	0
	closing	outputs the brake release signal when <u>P90.20</u>		
D 00.05	Delay before	(or <u>P90.21</u> in reverse running) is reached. Then	0.000	0
P90.25	reverse brake	the delay after forward brake release starts. The	0.000s	0
	closing	VFD normally accelerates to the set frequency		
	Delay after	within the time specified by <u>P90.22</u> (or <u>P90.23</u> in		
P90.26	forward brake	reverse running).	0.300s	0
-	closing	Stop: To prevent hook slip, sufficient output		
	Delay after	torque must be ensured before brake is closed.		
P90.27	reverse brake	After receiving the stop command, the VFD	0.000s	0
	closing	decelerates to <u>P90.28</u> with a maintenance		
P90.28	Retaining	frequency within <u>P90.29</u> . When output	5.00Hz	0
	frequency for stop			
	Retaining	running), the delay before brake release starts.		
P90.29	frequency hold	When the delay reaches <u>P90.24</u> (or <u>P90.25</u> in	0.000s	0
	time for stop	reverse running), the VFD outputs brake closing		
		signal. The delay after brake release starts. The		
		VFD decelerates to zero and stops within the		
		time $\underline{P90.26}$ (or $\underline{P90.27}$ in reverse running).		
		P90.12, P90.13setting range: 0.0–200.0% (of		
	Torque verification	the motor rated current)		
P90.30	fault detection	P90.14, 0.15 setting range: 0.0–200.0%(of the	6.000s	0
	time	motor rated current)		
		P90.16,90.17,P90.18,P90.19 setting range:		
		0.00–20.00Hz		
		P90.20,P90.21,P90.22,P90.23,P90.24,P90.25,P		
		90.26, P90.27 setting range: 0.000–5.000s		

Function code	Name	Description	Default	Modify
		Note: If reverse-running delay is 0, the		
		forward-running delay is used.		
		P90.28 setting range: 0.00–50.00Hz		
		P90.29 setting range: 0.000–5.000s		
		P90.30 setting range: 0.000–10.000s		
	Enabling the	P90.31 setting range: 0–1		
P90.31	monitoring on	0: Disable	0	O
	brake status	1: Enable the brake current monitoring (and		
	Brake feedback	brake feedback detection).		
	exception delay	When the function is disabled, no brake		
P90.32	(brake feedback	feedback fault is reported.	1.000s	0
	detection time)	After it is enabled, brake status can be		
	Brake monitoring	monitored.		
P90.33	current threshold	In open-loop mode: If the actual brake status is	100.0%	0
	Enabling speed	different from the S-terminal given brake		
P90.34	reference under	feedback signal during running or stop, the	0	O
	brake status error	brake feedback fault (FAE) is reported after the		
		brake feedback exception delay P90.32.		
		In closed-loop mode: During the stop, if a brake		
		feedback exception occurs, the brake feedback		
		fault (FAE) is reported after the brake feedback		
		exception delay <u>P90.32</u> .		
		During running, if a brake feedback exception		
	o	occurs, the current is monitored after the brake		
D00.05	Speed reference	feedback exception delay <u>P90.32</u> . If the present	5 0011	
P90.35	under brake	current is less than the monitored current, it is	5.00Hz	0
	status error	considered that the brake is not closed, and the		
		action specified by <u>P90.34</u> is performed. If		
		P90.34=0, the VFD directly reports the brake		
		feedback fault (FAE). If <u>P90.34</u> =1, the VFD		
		opens the brake and runs at the speed specified		
		by <u>0.35</u> , and reports the brake feedback alarm		
		(A-FA).		

Function code	Name	Description	Default	Modify
		Frequency Page 25 Page 25 P		
		brake feedback fault (FAE) is reported.		1

Function code	Name	Description	Default	Modify
		Frequency Cotevence Compute Compute Peologic Stant/stop Peologic Stant/stop Peologic Stant/stop Peologic Stant/stop Peologic Brake exception Brake exception Brake exception Brake exception Brake exception Brake exception Brake exception Brake exception Status Peologic Peologic Brake exception Fault Enables Peologic Peologic Brake exception Fault Peologic Peologic Brake exception Fault Peologic Peologic Brake exception Fault Peologic Peologic Brake exception Fault Peologic Peologic Peologic Brake exception Fault Enables Peologic Peologic Peologic Peologic Peologic Peologic Peologic Peologic Fault Fault Peologic Peologic Fault Fault Peologic Fault Peologic Fault Fault Peologic Peologic Fault Enables Peologic Peologic Fault Peologic Peologic Fault Peologic Fault Peologic Fault Fault Peologic Fault Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Fault Peologic Peologic Fault Peologic Peologic Fault Peologic Peologic Peologic Fault Peologic Peologic Fault Peologic Fault Peologic Fault Peologic Peologic Fault Peologic Fault Peologic Fault FAE Simultaneously) Peologic Peolog		
P90.36	Jog braking type	0x00-0x11 Ones place: Brake release type 0: Same as hoisting-oriented brake release frequency 1: Same as jog frequency Tens place: Brake closing type 0: Same as hoisting-oriented brake closing frequency 1: Same as jog frequency Tens place: Brake closing type 0: Same as hoisting-oriented brake closing frequency 1: Same as jog frequency Same as hoisting-oriented brake release frequency:	0x00	0


Function code	Name	Description	Default	Modify
		Protection brake Release brake Time		
		Ordent frequency POB.06 Brake status Close brake Algo command		
P90.37	Brake selection for forward/reverse switchover	0–1 0: No switchover 1: Switchover When P90.37=0, the switchover is performed directly, and the brake does not act. Output I I I I I I I I I I I I I I I I I I I	0	Ø

Function code	Name	Description	Default	Modify
D00.00	Restart selection	P90.38 setting range: 0–1		
P90.38	during braking	0: No restart during braking	0	O
P90.39	Wait time for restart	During the stop, if the brake closing command has been output, the system does not accept any new startup commands, and it can be restarted with a wait time of P90.39 after the brake is closed and VFD stops. 1: Restart allowed during braking Output requent Running Command Though the brake closing command has been output during stop, the VFD accepts a new start command. P90.39 setting range: 0.0–10.0s	0.5s	Ø
P90.40	Braking method in open-loop vector control	 0–3 0: Common mode 1: Torque mode with limit 1 The limit is specified by P90.41. 2: Torque/speed switchover mode 1 (boost with braking) It is used when P90.04=1 since the brake is involved. When the brake is opened, the speed mode is automatically used. 3: Torque/speed switchover mode 2 (horizontal moving) Since the brake is not involved, the torque/speed switchover is set through P90.44. The set frequency must be greater than P90.44. 	0	0

Function code	Name	Description	Default	Modify
P90.41	Torque limit 1 in open-loop vector control	Setting range: 0.0–300.0% (of the motor rated current) (P90.40=1 Torque limit mode)	120.0%	0
P90.42	Torque setting for brake release	0.0–200.0% During the running, when the torque feedback value is equal to or greater than P90.42, brake release timing is entered. (It is valid only when P90.04=1, which indicates the brake is controlled by the VFD, and the VFD uses the torque mode.)	50.0%	0
P90.44	Brake closing delay after stop DC braking starts	0.00–50.00HZ Used in torque/speed switchover mode 2	8.00Hz	0

P91 group--Functions special for cranes

Function code	Name	Description	Default	Modify
	Enabling the	The conical motor does not require external		
P91.00	conical motor	braking since it implements braking by using	0	O
	function	internal magnetic flux control. During start, the		
	Conical motor	starting frequency needs to be increased for		
P91.01	ACC process	brake release. During stop, quick demagnetizing	120.09/	0
P91.01	voltage coefficient	needs to be implemented to prevent slip in case	120.0%	0
	K1	of overdue brake closing.		
	Conical motor	P91.00 setting range: 0–1		
P91.02	constant process	0: Disable	100.0%	\sim
P91.02	voltage coefficient	1: Enable	100.0%	0
	K2	P91.00=0: Disable. Normal voltage curves are		
		used.		
		P91.00=1: Conical motor voltage curves are		
	Conical motor	used.		
P91.03	DEC process	P91.01 setting range: P91.02-150.0%	80.0%	0
P91.03	voltage coefficient	(100.0% corresponds to the motor rated	00.0%	0
	K3	voltage.)		
		<u>P91.02</u> setting range: <u>P91.03</u> – <u>P91.01</u>		
		P91.03 setting range: 0.0-P91.02		

Function code	Name	Description	Default	Modify
		1: Controlled by the VFD		
	Contactor			
P91.05	feedback	0.00–20.000s	1.000s	O
	detection time			
		0x00–0x11		
	Enabling	Ones place:		
	Enabling operating lever	0: Disable zero point position detection		
P91.06		1: Enable zero point position detection	0	O
	zero point position detection	Tens place:		
	detection	0: Do not detect AI2 after zero position detection		
		1: Detect AI2 after zero position detection		
		After the zero position detection signal is		
		enabled, the terminal zero position signal is		
		given in stop state, the zero position detection is		
		completed (valid) with a delay specified by		
		P91.07, the zero position signal is released, and		
		the VFD runs only after being given with the		
		running command. After the zero position signal		
		detection takes effect, if both the zero position		
	On exeting layer	signal and running command signal are		
D04.07	Operating lever	detected, the operating lever zero position fault	0.000-	
P91.07	zero point position	STC is reported. If the running command is	0.300s	0
	delay	given during zero position detection, the VFD		
		does not respond. If both the zero position signal		
		and running command signal still exist after zero		
		position detection, the operating lever zero		
		position fault STC is also reported. If the zero		
		position signal is removed suddenly during zero		
		position detection, the VFD does not respond to		
		the running command since zero position		
		detection is incomplete.		

Function code	Name	Description	Default	Modify
		VFD running Run Stop		
		status		
		Enabling zero Enable position Enable		
		S terminal zero position signal input zero position signal input		
		Zero position is valid position detection P91.07		
		FWD/RVS		
		VFD fault Normal I STC fault		
		After the VFD stops, the VFD starts zero position		
		detection. When the zero position detection		
		delay is reached, if the detection finds that Al2 is greater than 1.00V, the analog speed reference		
		deviation fault AdE is reported.		
		VFD Stop		
		Enablig zero Enable position detection		
		S terminal With zero position signal input input signal		
		Zero position is valid position detection P91.07		
		Analog Al2		
		0 Normal Addit fault		
		VED fault AdE fault AdE fault		
		Setting range: 0.000–10.000s		
		0–5		
	Light load speed	0: Disable		
P91.08	boost function	1: Constant power speed boost	0	O
	selection	2: Constant power speed limit		
		3: Stepped speed limit		

Function	Name	Description	Default	Modify
code	Name	Description	Delault	Wouldy
		4: Light load speed boost 1 (by set current and		
		frequency)		
		5: Speed boost through external terminal signal		
P91.09	Light-load	P91.08=4: Light load speed boost mode 1		
	speed-boost	(according to set current and frequency)	70.00Hz	0
1 51.05	target frequency	Output Light load speed boost frequency after current verification	10.00112	\bigcirc
	setting	P91.09 <u>success</u>		
	Light-load	P00.10		
P91.10	speed-boost	P91.10	90.0%	\circ
P91.10	detection	Motor rated requency P = - P91.11	90.0%	0
	frequency			
	Light-load			
P91.11	speed-boost	Output I I IIme	1.0000	\circ
P91.11	current detection	P91.12 or P91.13	1.000s	0
	time	Light load speed boost		
	FWD light-load	after current verification success		
P91.12	speed-boost	Time	00.00/	0
P91.12	current detection	Light load speed boost after current verification	60.0%	0
	value	SUCCESS Output		
		frequency		
		P00.10 No light load speed		
		P91.10 boost due to current verification failure		
		frequency P91.11		
		Output		
		current verification failure		
	REV light-load	P91.12 or P91.13		
	speed-boost			_
P91.13	current detection	↓ Time	40.0 %	0
	value	No light load speed boost due to current		
		verification failure		
		If light load speed boost mode 1 is enabled,		
		processing for light load speed boost is		
		performed only when the set frequency is no		
		less than P02.02 (Motor rated frequency). After		
		running, if the ramp frequency is equal to or		
		greater than <u>P91.10</u> , current is detected and		

Function code	Name	Description	Default	Modify
		count starts. When <u>P91.11</u> is reached, if the current is less than <u>P91.12</u> (or <u>P91.13</u> in reverse running), the current detection passes, the VFD increases the frequency to <u>P91.09</u> . If the current detection fails, the VFD remains the original frequency. Note: The light-load speed-boost target frequency setting must be higher than the set frequency. Otherwise, speed boost cannot be implemented although the conditions are met. If the set frequency is higher than <u>P91.10</u> , the original frequency is remained. <u>P91.09</u> setting range: 0.00–100.00Hz <u>P91.10</u> setting range: 50.0%–100.0% (of the motor rated frequency) <u>P91.11</u> setting range: 0.0–150.0% Note: Light load speed boost mode 1 is		
P91.14	Heavy-load speed-limit detection frequency	applicable to the open-loop mode.	40.00Hz	0
P91.15	Heavy-load speed-limit detection delay	When the set frequency is greater than the heavy load speed-limit detection frequency (<u>P91.14</u>), the motor running frequency becomes stable after reaching the detection frequency (<u>P91.14</u>), and load detection is performed after the time specified by <u>P91.15</u> . The load detection value is used for heavy load speed limit calculation. The load detection value <u>P19.11</u> can be viewed through the keypad. <u>P91.14</u> setting range: 0.00Hz– <u>P02.02</u>	0.35s	0

Function code	Name	Description	Default	Modify
		P91.15 setting range: 0.00–5.00s		
		P19.11 setting range: 0.0% –150.0% (of the		
		motor rated torque)		
	Electromotive	Limited frequency f Max. output		
D04.40	power upper limit	P00.03	00.00/	
P91.16	of constant-power	$\langle \rangle$	90.0%	0
	speed boost/limit	Limited frequency		
		fiim		
		P91.14		
		Load T		
		T1 Tn Tmax		
		Constant power speed limit frequency = Power upper		
		limit * Motor rated frequency/Load detection value		
		The constant power mode is used for speed		
		adjustment. The constant power speed limit		
		frequency under the present load is calculated		
		by using algorithms (using <u>P91.16</u> , <u>P91.17</u> , and		
		P19.11 for reference).		
		When P91.08=1, in constant power speed boost		
		mode, if the constant power speed limit		
	Electricity	frequency is lower than or equal to the		
	generation power	frequency upper limit P00.04, the VFD runs at		
P91.17	upper limit of	the constant power speed limit frequency. At the	100.0%	0
	constant-power	same time, if the set frequency is higher than or		
	speed boost/limit	equal to the constant power speed limit		
		frequency, the speed is limited at constant		
		power; if the set frequency is lower than the		
		constant power speed limit frequency, the speed		
		boosts.		
		When P91.08=2, in constant power speed limit		
		mode, if the constant power speed limit		
		frequency is lower than or equal to the		
		frequency upper limit P00.04: if the set		
		frequency is higher than or equal to the constant		
		power speed limit frequency, the speed is limited		
		at constant power; if the set frequency is lower		
		than the constant power speed limit frequency,		
		the set frequency is used for running.		

Function code	Name	Description	Default	Modify
	Name	For example, when P00.03=100Hz, P91.16=90.0%, and motor rated frequency=50.00Hz: If the detected load value during motor upward running is 30.0%, the limited frequency=150Hz(90.0%*50.00Hz/30.0%), the calculated limited frequency is higher than P00.03. If P91.08=1, the set frequency P00.03 is used for running. If P91.08=2, the constant power speed limit frequency does not work, and the set frequency is used for running. If the detected load value during motor upward running is 60.0%, the limited frequency =75Hz(90.0%*50.00Hz/60.0%), the heavy load speed limit function works. The upward max. output frequency is limited to 75Hz. If P91.08=1, the frequency 75Hz is used for running. If he set frequency is used for running. The similar calculation method is applicable to motor downward running, only replacing P91.16 with P91.17. Note: During open/closed loop switchover (there is difference in load detection value), adjust P91.16 and P91.17, and the heavy load speed	Default	Modify
		limit frequency cannot be lower than the heavy load speed limit detection frequency <u>P91.14</u> . <u>P91.16</u> , <u>P91.17</u> setting range: 30.0%–120.0% (of the motor rated power)		
P91.18	Load limit T1 in stepped speed limit upward running	Limited frequency f Max. output frequency P00.03 P91.23 (f3)	70.0%	0
P91.19	Restricted frequency f1 in stepped speed limit upward running	P91.21 (12)	50.00Hz	0

Function				
code	Name	Description	Default	Modify
	Load limit T2 in	limit parameters for upward running and for		
P91.20	stepped speed	downward running are set separately and can	45.0%	
	limit upward	be adjusted according to the actual situation.		0
	running	When the detected load (open-loop output		
	Restricted	current or closed-loop output torque) exceeds		
	frequency f2 in	the limited value, the running frequency must be		
P91.21	stepped speed	lower than the set restricted frequency.	75.00Hz	0
	limit upward	For example, during motor upward running,		
	running	when the detected load is greater than P91.18,		
	Load limit T3 in	the frequency is restricted to P91.19 (or when		
	stepped speed	the set frequency is less than <u>P91.19</u> , the		
P91.22	limit upward	running frequency is the set frequency). When	25.0%	0
	running	the detected load is greater than P91.20 (but		
	Restricted	less than <u>P91.18</u>), the frequency is restricted to		
	frequency f3 in	<u>P91.21</u> .		
P91.23	stepped speed	The detected load values in open/closed loop	100.00Hz	0
	limit upward	state have deviation. During the open/closed		
	running	loop switchover process, the load limit value can		
	Load limit	be adjusted through <u>P91.24</u> . <u>P91.24</u> is valid for	0.0%	
	adjusted gain in	<u>P91.18, P91.20,</u> and <u>P91.22</u> .		
P91.24	stepped speed	For example, when the same load is carried		0
	limit upward	upward and tested, if <u>P19.11</u> =50.0% in		
	running	closed-loop state and <u>P19.11</u> =55.0% in		
	Torque limit	open-loop state, there is a difference of 5%. In		
	adjusted gain in	the actual use, after setting closed-loop	0.0%	
P91.25	stepped speed	parameters, if you need to switch to the		0
	limit downward	open-loop state, you only need to set P91.24 to		
	running	5.0% (0 in closed-loop state), and you do not		
	Load limit T1 in	need to modify <u>P91.18</u> , <u>P91.20</u> , or <u>P91.22</u> .		
P91.26	stepped speed	The situation of downward running is similar and	55.0%	
	limit downward	therefore you only need to set parameters		0
	running	related to downward running.		
	Restricted	Note: The heavy load speed limit frequency		
	frequency f1 in	cannot be lower than P91.14.		
P91.27	stepped speed	<u>P91.18, P91.20, P91.22, P91.26, P91.28,</u>	50.00Hz	0
	limit downward	P91.30 setting range: 0.0%–150.0% (Open-loop		
	running	output current is relative to the motor rated		

Function				
code	Name	Description	Default	Modify
P91.28	Load limit T2 in stepped speed limit downward	current, while closed-loop output torque is relative to the motor rated torque.)	48.0%	0
	running	<u>P91.19, P91.21, P91.23, P91.27, P91.29,</u> <u>P91.31</u> setting range: 0.00– <u>P00.04</u>		
P91.29	Restricted frequency f2 in stepped speed limit downward running	<u>P91.24</u> , <u>P91.25</u> setting range: -20.0%–20.0% (Open-loop output current is relative to the motor rated current, while closed-loop output torque is relative to the motor rated torque.)	75.00Hz	0
P91.30	Load limit T3 in stepped speed limit downward running		25.0%	0
P91.31	Restricted frequency f3 in stepped speed limit downward running		100.00Hz	0
P91.32	Enabling frequency decrease with voltage	Frequency decrease with voltage indicates that the VFD can automatically decrease the output frequency to maintain torque output in case of low line or bus voltage.	1	O
P91.33	Starting voltage of frequency decrease with voltage	Standard bus vide (P1.33'537V + 20)V P91.33'537V Target Trequency Target Trequency Target The following assumes that the target frequency is set as the rated frequency. When P91.32=1, if the bus voltage is less than the starting frequency (Standard bus	85.0%	0

Function code	Name	Description	Default	Modify
		voltage* <u>P91.33</u>), output frequency starts decrease, the regulated target frequency is (Rated frequency*Present bus voltage/Standard bus voltage); if the bus voltage increases but it does not reach the restoration voltage (Standard bus voltage*(<u>P91.33</u> +5%), the output frequency remains unchanged; if the bus voltage continuously decreases, the output frequency continuously decreases; if the bus voltage rises and becomes greater than the restoration voltage, the output frequency increases to the rated frequency. <u>P91.32</u> setting range: 0: Disable 1: Enable <u>P91.33</u> setting range: 70.0%–95.0% (Standard		
P91.34	DEC position limit mode	bus voltage 537V) 0–1 0: Single direction limit 1: Bi-directional limit Upwerd lime Upwerd and position Dommard Int Dommard Int	0	0

Function code	Name	Description	Default	Modify
code		DEC position limit uses the similar rule. Bi-directional limit: When the upward/downward DEC limit position is reached, the upward/downward slow speed zone is entered, which indicates that both the upward and downward speeds are limited.		
		(Terminal command mode)		
P91.35	DEC position limit restricted frequency	0.00–20.00Hz	10.00Hz	0
P91.37	Enabling HDO based vortex control for tower crane slewing	 0-1 0: HDO keeps the same function as specified by <u>P06.00</u> 1: HDO is used as PWM signal for voltage adjustment output. P91.37=1: Enable the tower crane rotating vortex control. HDO connects to the PWM input of the turbulence module. You can enable the output voltage of the turbulence module to change with the frequency by setting P91.38–P91.47. 	0	0
P91.38	Frequency f0	P91.38 setting range: P91.40–P00.03 (Max.	50.00Hz	0
P91.39	Duty ratio corresponding to frequency f0	output frequency) <u>P91.40</u> setting range: <u>P91.42</u> – <u>P91.38</u> P91.42 setting range: P91.44–P91.40	100.0%	0
P91.40	Frequency f1	<u>P91.44</u> setting range: <u>P91.46</u> –P91.42	40.00Hz	0
P91.41	Duty ratio corresponding to frequency f1	P91.46 setting range: 0.00Hz– <u>P91.44</u> P91.39, P91.41, P91.43, and <u>P91.47</u> setting range: 0.0%–100.0%	80.0%	0
P91.42	Frequency f2	Segmented adjustment is performed based on	20.00Hz	0
P91.43	Duty ratio corresponding to frequency f2	the cycle ratio and frequency.	40.0%	0
P91.44	Frequency f3	P9143	10.00Hz	0
P91.45	Duty ratio corresponding to frequency f3	P9145 P9147 P9146 P9144 P9142 P9140 P9138 Frequency	20.0%	0

Function code	Name	Description	Default	Modify
P91.46	Frequency f4	Note: The HDO output polarity is specified by	0.00Hz	0
P91.47	Duty ratio corresponding to frequency f4	<u>P06.05</u> .	0.0%	0
P91.48	HDO carrier frequency	0.5–10.0kHz	1.0kHz	0
P91.49	HDO closing delay during stop	0–100.0s	5.0s	0
P91.50	Pre torque input signal source	0–4 0: Invalid 1: Al1 2: Al2 3: Modbus 4: Internally given	0	0
P91.51	Pre torque offset	In closed-loop mode:	0.0%	0
P91.52	Drive-side gain	Setting pre torque is to output the torque	1.000	0
P91.53	Braking-side gain	corresponding to load weight in advance so as to reduce the start impact and prevent reserve driving or slip during start. Setting <u>P91.51</u> is to eliminate the impact of mechanical counterweight for lifting; pre torque compensation is directly performed if there is no mechanical counterweight. Pre torque compensation quantity = K*(<u>P91.50</u> – <u>P91.51</u>), in which K= <u>P91.52</u> when the motor is in electromotive state and K= <u>P91.53</u> when the motor is in power generation (braking) state. <u>P91.51</u> setting range: -100.0–100.0% <u>P91.52</u> , <u>P91.53</u> setting range: 0.000–7.000	1.000	0
P91.54	Pre torque direction	0–1 0: Forward 1: Reverse	0	0
P91.55	Enabling rope tracking	P91.55: 0–1 P91.56: 0.00–50.00HZ	0	0
P91.56	Rope-tracking speed boost frequency	P91.57: 0.000–10.000s P91.58: 0.00–120.0% When the rope tracking function has been	25.00HZ	0

Function code	Name	Description	Default	Modify
P91.57	Delay when rope-tracking frequency reached	enabled, if the set frequency is lower than the rope tracking frequency, the VFD boosts to the rope tracking frequency after startup and takes a delay later. When the delay is reached, the VFD	1.000s	0
P91.58	Rope-tracking torque	calculates the output torque. If the output frequency is greater than the preset torque (empty-load torque usually), the VFD considers the rope is too tight. Then the frequency is decreased to the set frequency. Running command Output frequency P91.56 Set performed P91.58 P91.58 Note: This function is mainly applicable to crane trolleys.	40.0%	0

P92 group—Hoisting protection function group 3

Function code	Name	Description	Default	Modify
P92.00	Enabling low voltage protection	Output frequency	0	O
P92.01	Low voltage protection point	Brain Page 100	1.05	0
P92.02	Low-speed run protection time	Low-speed run protection is applied to devices to which long-time low speed running is not applicable, preventing overheating caused by late dissipation.	0.000s	O
P92.03	Setting of low-speed run frequency	Rumning command Low speed protection output When P92.02 is a non-zero value, low-speed running protection is enabled, if the running frequency of the VFD is equal to or less than	5.00Hz	0

Function	Name	Description	Default	Modify
code		P92.03, and the last time is equal to or greater		
		than <u>P92.02</u> , the VFD reports a low-speed		
		running protection fault (LSP).		
		P92.02 setting range: 0.000–50.000s		
		<u>P92.03</u> setting range: 0.00–20.00Hz		
	Overload	When P92.38=1 overload protection is enabled.		
P92.04	protection current	When P92.04>0, if the ramp frequency is equal	0.0%	O
	detection value	to or greater than (P90.16+2.00Hz) during		
		upward running, the VFD starts checking the		
		current (closed-loop torque current or		
		open-closed output current). If the current is		
		equal to or greater than <u>P92.04</u> , the VFD reports		
		the overload protection alarm after the detection		
		time reaches P92.05. This restriction is not		
		applicable to downward running.		
		Output		
		frequency		
P92.05	Overload detection time	P90.16+2Hz P90.16 P90.16 Torque current % P92.04 Relay output Normal A-OL P92.04 Setting range: 0.0–150.0% (relative to the motor rated torque in closed-loop state; relative to the motor rated current in open-loop state; 0	0.5s	0
		indicates disabling)		
		P92.05 setting range: 0.0–5.0s		
DOG GG	Brake detection	When <u>P92.06</u> >0, the brake detection reminding	0.0	
P92.06	reminding interval	function is enabled, if the accumulative running	0.0	O
P92.07	Brake detection	time of the VFD is equal to or greater than	5	0
P92.07	reminding hold	P92.06, the signal indicator is controlled through	Э	0

Function	Name	Description	Default	Modify
code	Name	Description	Delaun	wicany
	time	relay output signal or braking detection is		
		reminded through the buzzer. The reminding		
		hold time is specified by <u>P92.07</u> . After the time		
		elapsed, reminding is not performed until		
		re-power on.		
		P92.06 setting range: 0.0–1000.0h		
		P92.07 setting range: 0–100min		
P92.08	Brake detection	In open-loop control: Set a fixed torque and	150.0%	0
1 32.00	torque setting	frequency and run the VFD. Through visual	100.070	\bigcirc
P92.09	Brake detection	inspection, if the brake is not opened within the	5.00Hz	0
F92.09	frequency setting	detection time, braking is normal. Otherwise,	5.00HZ	0
P92.10	Brake detection	braking is abnormal.	5.0s	0
F92.10	time setting	In closed-loop control: When the braking force	5.05	0
		detection terminal enabling signal is valid, the		
		VFD keeps the brake closed, if a running		
		command is input, the VFD runs with <u>P92.08</u> at		
		P92.09 and detects the encoder pulse count. If		
		the detected encoder pulse count exceeds		
		P92.11 within P92.10, it is considered that		
		braking force is insufficient and slip risk may		
		exist. Then the multifunction output terminal		
		outputs brake failure signal and the brake slip		
		fault and outputs the brake failure fault (bE).		
	Brake detection	VFD status Fault (bE)		
P92.11	judging pulse	Encoder pulse	500	0
_	threshold	P92.11		
	(closed-loop)			
		Frequency		
		Torque current % ↑ P92.10		
		⁷⁰ P92.08 T		
		Brake detection Valid S terminal Valid		
		Running Run		

Function code	Name	Description	Default	Modify
		<u>P92.08</u> setting range: 0.0% –180.0% (of the		
		motor rated torque)		
		P92.09 setting range: 0.00Hz–20.00Hz		
		P92.10 setting range: 0.0s–30.0s		
		P92.11 setting range: 0–20000		
		0x00–0x11		
		Ones place: whether to enable PT100		
	Enabling	temperature detection		
	PT100/PT1000	0: Disable		
P92.12	temperature	1: Enable	0x00	O
	detection	Tens place: whether to enable PT1000		
		temperature detection		
		0: Disable		
		1: Enable		
		0x00–0x11		
		Ones place: whether to enable PT100		
	Enabling	disconnection detection		
		0: Disable		
P92.13	PT100/PT1000	1: Enable	0x00	O
	disconnection	Tens place: whether to enable PT1000		
	detection	disconnection detection		
		0: Disable		
		1: Enable		
	PT100			
P92.14	overtemperature	0.0–150.0°C	120.0°C	0
	protection point			
	PT100			
P92.15	overtemperature	0.0–150.0°C	100.0°C	0
	pre-alarm point			
	PT1000			
P92.16	overtemperature	0.0–150.0°C	120.0°C	0
	protection point			
	PT1000			
P92.17	overtemperature	0.0–150.0°C	100.0°C	0
	pre-alarm point			
	PT100/PT1000	50.0.450.000	100.000	
P92.18	calibrated	50.0–150.0°C	120.0°C	0

Function code	Name	Description	Default	Modify
	temperature upper limit			
P92.19	PT100/PT1000 calibrated temperature lower limit	-20.0–50.0°C	20.0°C	0
P92.20	Digital of PT100/PT1000 calibrated temperature	 0-4 0: Normal detection 1: PT100 lower limit digital calibration autotuning 2: PT100 upper limit digital calibration autotuning 3: PT1000 lower limit digital calibration autotuning 4: PT1000 upper limit digital calibration autotuning After autotuning is completed, the function code is automatically cleared, and the cablibration value is automatically saved to the I/O card. 	0	0
P92.21	PTC overtemperature selection	 0–1 0: The PTC function is enabled through terminal selection. When the PTC overtemperature alarm A-Ptc is reported, this cannot terminate normal running. 1: The PTC function is enabled through terminal selection. When the PTC overtemperature fault PtcE is reported, this results in stop. 	0	O
P92.22	Type of sensor for AI to detect motor temperature		0	0
P92.23	Al detected motor overtemperature protection threshold	0.0–200.0°C	110.0	0
P92.24	AI detected motor overtemperature pre-alarm	0.0–200.0°C	90.0	0

Goodrive350-19 series VFD for crane

Function code	Name	Description	Default	Modify
	threshold			
P92.27	Anti-snag protection braking torque	Output P92.28 frequency P92.29	0.0%	0
P92.28	Braking torque ACC/DEC time	S-terminal anti-snag protection	0.200s	0
P92.29	Braking torque end frequency	Anti-snag indicates that the VFD outputs reserve torque so that the motor can stop at the fastest speed. A smaller value of <u>P92.28</u> indicates a faster braking speed. When the motor decelerates to <u>P92.29</u> , the VFD stops. <u>P92.27</u> setting range: 0.0–300.0% (of the motor rated current) <u>P92.28</u> setting range: 0.00–10.000s <u>P92.29</u> setting range: 0.00–30.00Hz	0.10Hz	0
P92.30	Enabling set frequency protection	0–1 0: Disable 1: Enable After the function is enabled, if the brake is opened, detection protection is performed. When the set frequency is equal to or lower than the value of P92.31, a fault is reported (the frequency setting fault SFE is reported after the speed is decreased if the speed is high); if the brake is closed, no detection is performed.	0	Ø
P92.31	Set frequency fault protection threshold	0.00–10.00Hz	2.00Hz	O
P92.32	Current imbalance multiple	0.0–5.5 When the value is not zero, current imbalance detection is enabled. When the 3PH current max. value divided by the min. value is greater than this multiple, the Cuu fault is reported.	0.0	O

Function code	Name	Description	Default	Modify
	Enabling	P92.33 setting range: 0–1		
P92.33	overspeed fault	P92.34 setting range: 100.0%–500.0% (of the	0	O
	detection	set frequency)		
P92.34	Overspeed fault value	The overspeed protection function can be enabled in open/closed loop vector mode, but in closed loop mode, the actual speed feedback comes from the encoder. When the overspeed protection function is enabled, the overspeed protection threshold of VFD is calculated, which is Set frequency * Overspeed protection percentage. When the VFD runs, if the actual frequency is greater than or equal to the protection threshold, the VFD considers it is in the overspeed state, reports an overspeed fault, and stops running.	150.0%	Ø
P92.35	Enabling stalling fault detection	P92.35 setting range: 0–1 P92.36 setting range: 0.0 –250.0% (100.0%	0	O
P92.36	Stalling detection current value	corresponding to the motor rated current) Setting range of P92.37: 0.00–10.00s	200.0%	O
P92.37	Stalling detection time	The stalling protection function can be enabled in open/closed loop vector mode, but in closed loop mode, the actual speed feedback comes from the encoder. When the stalling protection function is enabled, if the target frequency is greater than 0.50Hz during VFD running, the VFD starts delay timing. When the preset time is reached, if the actual running frequency is still lower than 0.50Hz, and the output current is greater than the stalling protection current value, which lasts 20ms, the VFD considers stalling occurs, and then it reports the fault and stops running.	3.00s	٥

Function code	Name	Description	Default	Modify
		Output frequency Set frequency 0.5Hz P92.37 Output current P92.36 Fault state E-ds		
P92.38	Enabling overload	0–2 0: Disable 1: Torque overload Determined by P92.04 and P92.05. 2: Weight overload Determined by P92.39–P92.46.	0	0
P92.39	Weighing	Setting range of P92.39: 0–2	0	0
P92.40	calibration	0: Normal mode 1: Peeled autotuning	0.00	0
P92.40	Peeled loading Non-empty	2: Loaded autotuning	0.00	0
P92.41	loading	This parameter is automatically cleared after	0.00	0
P92.42	Peeled torque	autotuning is completed.	0.0%	0
P92.43	Loaded torque	P92.40 setting range: 0.0–20.00t P92.41 setting range: 0.0–20.00t P92.42 Setting range: 0.–250.0% (of the motor rated torque) P92.43 Setting range: 0–250.0% (of the motor rated torque) For peeled autotuning, when P92.39=1, the LED keypad displays "LoAd1". After pressing "Run", the autotuning starts, and the obtained torque value is automatically saved to P92.42. In addition, the VFD decelerates to stop. When the VFD stops, the LED keypad does not display "LoAd1". For loaded autotuning, when you have entered the weight to P92.41 and set P92.39=2, the LED keypad displays "LoAd2". After pressing "Run",	0.0%	0

Function code	Name	Description	Default	Modify
		the autotuning starts, and the obtained torque value is automatically saved to P92.43. In		
		addition, the VFD decelerates to stop. When the		
		VFD stops, the LED keypad does not display "LoAd2".		
		Weight		
		P9241 P9240 P9242 P9243 Output torque		
P92.44	Mechanism rated	0.0–20.00t	2.00	0
1 52.44	load	0–150.0% (of the mechanism rated load)	2.00	
	Mechanism	0–150.0% (of the mechanism rated load)		
P92.45	overload	When the weighing function is enabled, if the	90.0%	O
	pre-alarm point	VFD reaches the constant speed running state,		
		the VFD output torque is obtained in real time,		
		and then the present weight is calculated by		
		using the torque and weight line simulated by		
		weight autotuning. The weight is displayed through P94.37.		
		If the present weight is greater than the		
	Mechanism	protection point, the overweight fault is reported,		
P92.46	overload	and the VFD stops. If the present weight is less	105.0%	O
	protection point	than the protection point but greater than the		
	1	pre-alarm point, the overweight alarm is		
		reported, but the VFD still runs.		
		When the weighing function is enabled, the VFD		
		displays the weight in real time during constant		
		speed running; the VFD displays zero during		
		ACC/DEC or stop.		

Goodrive350-19 series VFD for crane

Function code	Name	Description	Default	Modify
		Output frequency Set frequency		
		Output torque		
		Weight Weight		
		P92.46 P92.46 P92.46 P92.46 P92.45 P9		
		Alarm state A-OL Fault state E-OvL		

P93 group—Closed-loop hoisting functions

Function code	Name	Description	Default	Modify
P93.00	Brake slip speed threshold	0.10–5.00Hz	1.00Hz	0
P93.01	Brake slip fault delay	0.000–5.000s The value 0 indicates brake slip is not detected, while a non-zero value indicates brake slip is detected. If the feedback frequency is greater than the value of P93.00, which lasts the time specified by P93.01, the brake failure fault (bE) is reported. For details, see the torque verifying and brake slip descriptions in the brake function commissioning section.	0.500s	0
P93.02	Zero servo protection mode	 0-3 0: Disable zero servo 1: Zero servo input slows down 2: Zero servo input is always valid (keep running at zero speed) 3: Zero servo input slows down with a zero-speed running period specified by P93.38 Note: 1. At certain faults that cannot be reset, such as VFD internal hardware damaged, zero 	0	0

Function code	Name	Description	Default	Modify
coue		servo cannot be entered. At the faults that		
		can be reset, with zero servo conditions met,		
		zero servo can be entered.		
		2. Every time zero servo is exited, torque		
		verification is not performed only at the first		
		running command giving, which means the		
		verification is performed at all the following		
		running command giving.		
		3. When P93.02=2, the motor becomes hot,		
		the fan cannot be mounted at the same shaft		
		as the motor, and it must be independently		
		controlled.		
	Brake failure	• When <u>P93.02</u> =1:		
P93.03	protection	The zero servo function needs to be used in	4.00Hz	0
	frequency	closed-loop vector control. During stop, the VFD		
	Slow lowering	checks whether the pulse value is greater than		-
P93.04	hold time	P93.05. If yes, the VFD reports the brake failure	2.0s	0
		alarm, and the output can be set through the		
		relay. After the brake failure alarm protection		
		input delay specified by P93.06 (if the pulse		
		value is greater than triple the zero servo		
		tolerance pulse threshold specified by P93.05		
		within the period, the delay specified by <u>P93.06</u>		
		is skipped), if P93.02=1 (Zero servo input slows		
		down), the VFD runs downward slowly at the		
	Zero servo	frequency specified by P93.03, and it coasts to		
P93.05	tolerance pulse	stop when the slow lowering hold time specified	20000	0
F93.05	threshold	by P93.04 is reached. Then the VFD performs	20000	0
	theshold	detection again and repeats the preceding		
		steps, which are cyclical.		
		<u>P93.02</u> =2 Zero servo protection mode Zero		
		servo input is always valid (keep running at zero		
		speed).		
		P93.03 setting range:P90.17 (Reverse brake		
		release frequency)–8.00Hz		
		P93.04 setting range: 0.0s-30.0s		
		P93.05 setting range: 0–60000		
P93.06	Brake failure	0–20.000s	1.000s	0

Function code	Name	Description	Default	Modify
	alarm protection input delay			
P93.07	Brake failure alarm protection reset method	0–2 0: Only for downward running 1: Both for upward and downward running 2: Only for reset commands	0	Ø
P93.08	Enabling height measuring	0–1 0: Disable 1: Enable internal measuring (motor encoder) 2: Enable external measuring (HDI) Note: When <u>P93.08</u> =2, <u>P20.15</u> =0 indicates HDI measuring the height.	0	0
P93.09	Mechanical transmission ratio	For internal measurement (motor encoder), the encoder is mounted on the motor shaft, and <u>P93.09</u> is the reduction ratio between the motor shaft and drum shaft. For external measurement (HDI), <u>P93.09</u> is the reduction ratio between the encoder mounting shaft and pulley shaft. If the encoder is mounted on the pulley, set <u>P93.09</u> =1. For example, for gear speed reduction, Mechanical transmission ratio = (Number of teeth in gear 2)/(Number of teeth in gear 1) Geer 2 Gear 1 Gear 1 Gear 1 Gear 2 Gear 1 Gear 1 G	10.00	0
P93.10	Suspension ratio	Setting range: 1–4 1: 1:1 2: 1:2 3: Reserved 4: 1:4 For example: Suspension ratio	1	Ø

Function code	Name	Description	Default	Modify
		Note: The suspension ratio is related to the		
		pulley through which the steel rope goes.		
P93.11	Rope length compensation	Rope length to compensate the distance from the center of gravity of the weight to the hook. 0.00m–50.00m	0.00m	0
P93.12	Cable diameter	To measure heights correctly in closed-loop	10.0	0
P93.13	Per-layer turns of drum winding	mode, the actual running distance of the motor is calculated by using the encoder pulse count.	30	0
P93.14	Initial turns of drum winding	Before first running, the upward limit position must be calibrated.	0	0
P93.15		The procedure for first running is as follows: Set the upward limit position terminal, for example, <u>P05.05</u> =64. Then the HDI terminal functions as the upward limit position input. If internal measurement (motor encoder) is enabled, set <u>P93.08</u> =1. Start the tower crane to run upward and stop at the upward limit position. Record the values of <u>P93.14</u> (Initial turns of drum winding) and <u>P93.15</u> (Initial diameter of drum/pulley diameter). In open/closed loop mode, if external measurement (HDI) is enabled, set <u>P93.08</u> =2. Start the tower crane to run upward and stop at the upward limit position. <u>P93.12</u> setting range: 0.1–100.0mm <u>P93.13</u> setting range: 1–200	600.0	0

Function code	Name	Description	Default	Modify
		P93.14setting range: 0–P93.13(Per-layer turnsof drum winding)P93.15setting range: 100.0–2000.0mm(Max. drum diameter in upward limit, including cable thickness)p19.15P19.15setting range: 0.00–655.35m (hook lowering distance)P19.16P19.17Setting range: 0–655350x00–0x11		
P93.16	Enabling upward/downward limit position check	Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. For example, when the upward/downward limit position needs to be set manually, you can enable the check of whether the upward/downward limit position is reached. When the hook reaches a certain distance from the top, the upward limit position is reached, <u>P19.15</u> =0 (droop height); when the hook reaches a certain distance from the ground, <u>P93.18</u> =0 (distance from downward limit position); <u>P93.17</u> displays the distance between the upward and downward limit positions. During normal running between the upward and downward limit position distance, while <u>P19.15</u> displays the upward limit position distance; if the mechanism runs below the downward limit position, <u>P93.18</u> displays a negative value.	0x00	0
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position to the downward limit position)	0.00m	•
P93.18	Measured height 1	-50.00m–655.35m (The downward limit position is used as the reference point. During downward limit,	0.00m	•

Function code	Name	Description	Default	Modify
		<u>P93.18</u> =0.00m)		
P93.19	Loose rope autotuning	0: Disable 1: Autotuning for upward 2: Autotuning for downward	0	0
P93.20	Enabling loose rope protection	0–2 0: Disable 1: Enable 2: Enable stable lifting protection	0	O
P93.21	Loose rope detection method	0–2 0: Set through torque 1: Set through torque autotuning 2: Set through external signal detection (AI1)	0	0
P93.22	Upward set value of external loose rope signal	0.0–10.0V	0.0V	0
P93.23	Downward set value of external loose rope signal	0.0–10.0V	0.0V	0
P93.24		After loose rope protection is enabled, loose rope detection is performed during crane startup:	5.0%	0
P93.25	Torque setting for downward loose rope protection	When the hoist runs upward and reaches <u>P93.26</u> , torque detection is performed after the delay <u>P93.28</u> . If the detected status is non loose	5.0%	0
P93.26	Loose rope protection hold frequency	rope (Torque value > Loose rope torque <u>P93.24</u> or <u>P93.25</u> for downward running), normal ACC/DEC is performed.	15.00Hz	0
P93.27	Loose rope protection hold time	If the detected status is loose rope (Torque value <= Loose rope torque <u>P93.24</u>), the output frequency is restricted to <u>P93.26</u> within <u>P93.27</u> .	2.0s	0
P93.28	Loose rope detection delay	If load holding, (Torque value) > (Loose rope torque <u>P93.24</u> +2%), is detected within <u>P93.27</u> , normal ACC/DEC is performed from this time. If the time exceeds <u>P93.27</u> , normal ACC/DEC is performed from this time. <u>P93.24</u> can be set with the reference to the autotuning result <u>P93.33</u> . Generally, the value of <u>P93.24</u> can be the value of <u>P93.33</u> added by	0.5s	0

Goodrive350-19 series VFD for crane

Function code	Name	Description	Default	Modify
		1%-2%. Led held during Lose reperting and the state of t		
P93.29	Downward loose rope protection mode	P93.29 setting range: 0–1	0	0
P93.30	REV running time of downward loose rope mode 2	During downward running, if the loose rope status occurs after the loose rope detection delay, the preset processing way is used. 0: Mode 1. The VFD reports the loose rope	5.00s	0
P93.31	Frequency setting of downward loose rope mode 2	protection fault (SLE) and stops.	5.00Hz	0

Function code	Name	Description	Default	Modify
		1: Mode 2. The VFD outputs the loose rope protection alarm (A-SL), changes the direction, and runs upward at the frequency specified by P93.30 is reached or the loose rope status disappears.		
		P93.31 setting range: 1.00Hz–10.00Hz		
		Note: P93.30 must be greater than the sum of		
		the time taken to decelerate from P93.26 to 0Hz		
		and the time taken to accelerate from 0Hz to		
	Towns of sure 1	<u>P93.31</u> .		
D00.00	Torque of upward		0.00/	
P93.32	loose rope	Step 1 Put the hook on the ground and loosen	0.0%	0
	autotuning	the rope.		
P93.33	Torque of downward loose rope autotuning	Step 2 Set <u>P93.19</u> =1 (or <u>P93.19</u> for downward running). Step 3 Push the operating lever to step-2 speed (higher than 10Hz), which is held at least 1s in the loose rope state after the frequency is stable (to autotune stable frequency torque). Step 4 Stop the device and check the autotuning result. If <u>P93.32</u> (or <u>P93.33</u> for downward	0.0%	0

Function code	Name	Description	Default	Modify
		running) is not 0, autotuning is successful. Otherwise, you have to perform autotuning again. <u>P93.32</u> , <u>P93.33</u> setting range: 0.0–50.0%(of the rated torque from the autotuning result)		
P93.34	Smooth lifting protection frequency	When <u>P93.20</u> =2, indicating stable lifting protection is enabled to attenuate the shock caused by violent jittering up and down when the	10.00Hz	0
P93.35	Smooth lifting torque change rate protection point 1 (in ACC)	load is lifted and by sudden changes in load during high-speed running. During constant speed running, if the detected torque change rate is greater than the smooth	80.0%/s	0
P93.36	Smooth lifting torque change rate protection point 2 (in constant speed running)	lifting torque change rate protection point 2 (specified by P93.36), the smooth lifting function is enabled, and the smooth lifting function set frequency (P93.34) is used. At this time, if the detected torque change rate is less than the smooth lifting torque change rate protection	30.0%/s	0
P93.37	Smooth lifting torque change rate protection point 3 (exiting smooth lifting)	point 3 (specified by P93.37), acceleration to the set frequency is executed, at gear-1 speed, as shown in the preceding figure.	10.0%/s	

Function code	Name	Description	Default	Modify
		and the smooth start function set frequency (P93.34) is used. At this time, if the detected		
		torque change rate is less than the smooth lifting		
		torque change rate protection point 3 (specified		
		by P93.37), acceleration to the set frequency is		
		executed, at gear-2 speed, as shown in the		
		preceding figure.		
		Output frequency		
		Speed of		
		P93.34		
		P93.37		
		Startitop command Start		
		Smooth lifting during ACC running		
		P93.34 setting range: 5.00Hz–50.00Hz		
		P93.35 setting range: 0.0–150.0%/s		
		P93.36 setting range: 0.0–150.0%/s		
		P93.37 setting range: 0.0–150.0%/s		
		Note: The smooth lifting function is		
		applicable only to the upward running.		
P93.38	Zero-servo zero-speed hold	Valid only when P93.02=3, indicating the hold	10	0
	time	time of zero speed running, in minutes.		_

P94 group--Hoisting status display

Function code	Name	Description	Default	Modify
		0–15 0: None		
P94.00	Alarm display	1: Input phase loss alarm (A- SPI)	0	•
	value	 2: Upward position limit alarm (A-LU) 3: Downward position limit alarm (A-Ld) 		
		4: Low voltage protection alarm (A-LvP)		

Function code	Name	Description	Default	Modify
coue		5: Overload protection alarm (A-OL)		
		6: Brake failure alarm (A-bS)		
		7: Brake feedback alarm (A-FA)		
		8: Loose rope protection alarm (A-SL)		
		9: PT100 overtemperature alarm (A-Ot1)		
		10: PT1000 overtemperature alarm (A-Ot2)		
		11: PT100 disconnection alarm (A-Pt1)		
		12: PT1000 disconnection alarm (A-Pt2)		
		13: PTC overtemperature alarm (A-Ptc)		
		14: AI detected overtemperature alarm (A-AOt)		
		15: Weighing alarm (A-OvL)		
P94.01	Detected load torque value	0.0% –150.0% (of the motor rated torque)	0.0%	•
P94.02	Brake detection	0.0–1000.0h	0.0	
F 94.02	reminding time	0.0-1000.011	0.0	•
	Actual step of			
P94.03	graded multi-step	0–6	0	•
	speed			
		0–2		
		0: There is input at zero-point position, but the		
		VFD is still in running state.		
	Zero-point	1: The VFD has stopped, but there is input of		
P94.04	position status	zero-point signal, and zero position delay is	0	•
	pecilion clarac	reached (zero position is valid).		
		2: In condition of status 1, if a run command is		
		given and the zero position has been left, the		
		run command is valid.		
		0.00–655.35m (hook lowering distance)		
P94.05	Measured height	(As the master in master/slave control, it sends	0.00	•
		this value.)		
	Hight bits of			
P94.06	measured height	0–65535	0	•
	count value			
	Low bits of			
P94.07	measured height	0–65535	0	•
	count value			
P94.08	PT100 calibrated	-20.0–150.0°C	0.0	

Function code	Name	Description	Default	Modify
	temperature upper limit			
P94.09	PT100 calibrated temperature lower limit	-20.0–150.0°C	0.0	•
P94.10	Digital of PT100 calibrated temperature upper limit	0–4096	0	•
P94.11	Digital of PT100 calibrated temperature lower limit	0–4096	0	•
P94.12	PT1000 calibrated temperature upper limit	-20.0–150.0°C	0.0	•
P94.13	PT1000 calibrated temperature lower limit	-20.0–150.0°C	0.0	•
P94.14	Digital of PT1000 calibrated temperature upper limit	0–4096	0	•
P94.15	Digital of PT1000 calibrated temperature lower limit	0–4096	0	•
P94.16	PT100 present temperature	-50.0–150.0°C	0.0°C	•
P94.17	PT100 present digital	0–4096	0	•
P94.18	PT1000 present temperature	-50.0–150.0°C	0.0°C	•
P94.19	PT1000 present digital	0–4096	0	•
P94.20	AI detected motor temperature	-20.0–200.0°C	0.0°C	•

Function code	Name	Description	Default	Modify
P94.21	Brake slip speed	0.00Hz–10.00Hz	0.00Hz	•
P94.22	Brake slip pulses	0–65535	0	•
P94.23	Light load speed boost status	0–3 0: Normal mode 1: Forward speed boost with light load 2: Reverse speed boost with light load 3: Constant power speed boost	0	•
P94.24	Status of frequency decrease with voltage	0–1 0: Normal mode 1: In state of frequency decrease with voltage	0	•
P94.25	Average torque of loose rope	0.0% –150.0% (of the motor rated torque)	0.0%	•
P94.26	Load torque change rate in smooth lifting	0.0–100.0%/s	0.0%	•
P94.27	Status of smooth lifting	0–1 0: Normal mode 1: In smooth lifting	0	•
P94.28	Current imbalance multiple	0.0–6553.5	0.0	•
P94.31	Anti-sway status	0–1 0: No anti-sway 1: In anti-sway state	0	•
P94.32	Obtained rope length	0–600.0m (As the slave in master/slave control, it receives this value.)	0	•
P94.33	Rope length with compensation	0–600.0m	0	•
P94.34	Pendulum length cycle	0–60000ms	0	•
P94.35	Real-time ACC/DEC time	0–60000ms	0	•
P94.36	Present ACC speed	-300.00–300.00Hz/ms	0	•
P94.37	Mechanism real-time load	0.0–20.00t	0	•
P94.38	Max. slip per-unit display	0–65535	0	•

8 Troubleshooting

8.1 What this chapter contains

The chapter tells you how to reset faults and check faults history. A complete list of alarms and fault information as well as possible causes and corrective measures are presented in this chapter.

Only trained and qualified professionals are allowed to carry out the operations mentioned in this chapter. Please carry out operations according to instructions presented in "Safety precautions".

8.2 Indications of alarms and faults

Faults are indicated by indicators. When the **TRIP** indicator is on, the alarm or fault code displayed on the keypad indicates the VFD is in abnormal state. This chapter covers most of the alarms and faults, and their possible causes and corrective measures. If you cannot find out the causes of alarms or faults, contact local INVT office.

8.3 Fault reset

The VFD can be reset by pressing the keypad key STOP/RST, digital inputs, or by cutting off the VFD power. After faults are removed, the motor can be started again.

8.4 Fault history

The function codes from P07.27 to P07.32 record the types of the last six faults. The function codes P07.33–P07.40, P07.41–P07.48, P07.49–P07.56 record the running data of the VFD at the last three faults.

8.5 Faults and alarms

Do as follows if the VFD encounters a fault:

- 1. Check whether there is any exception on the keypad. If yes, contact the local INVT office.
- 2. If no, check function group P07 to view the fault record parameters and understand the actual condition.
- 3. See the following table for a detailed solution and check for exceptions.
- 4. Rectify the fault or ask for help.
- 5. Ensure the fault has been rectified, perform fault reset, and run the VFD again.

8.5.1 Faults and solutions

Fault code	Fault type	Possible cause	Solution
	Inverter unit	ACC is too fast.	Increase ACC time.
OUt1	U-phase	IGBT module is damaged.	Replace the power unit.
	protection	Misoperation caused by	Check drive wires.
OUt2	Inverter unit	interference.	Check whether there is strong
00t2	V-phase	Drive wires are poorly	interference surrounding the

Fault code	Fault type	Possible cause	Solution
	protection	connected.	peripheral device.
	Inverter unit	To-ground short circuit occurs.	
OUt3	W-phase		
	protection		
	Overvoltage		Check the input power.
OV1	during	Exception occurred to input	Check whether load DEC time is
	acceleration	voltage.	too short.
	Overvoltage	Large energy feedback.	or the motor starts during rotating.
OV2	during	Lack of braking units.	Install dynamic brake
	deceleration	Energy-consumption braking is	components.
	Overvoltage	not enabled.	Check the related function code
OV3	during constant	Deceleration time is too short.	settings.
	speed running		oottingo.
	Overcurrent	ACC/DEC is too fast.	Increase ACC/DEC time.
OC1	during	The voltage of the grid is too	Check the input power.
	acceleration	low.	Select a VFD with larger power.
	Overcurrent	The VFD power is too small.	Check whether the load is short
OC2	during	Load transient or exception	circuited (to-ground short circuit or
	deceleration	occurred.	line-to-line short circuit) or the
		To-ground short circuit or output	rotation is not smooth.
	Overcurrent	phase loss occurred.	Check the output wiring.
OC3	during constant	Strong external interference	Check whether there is strong
000	speed running	sources.	interference.
	opood running	Overcurrent stalling protection	Check the related function code
		is not enabled.	settings.
		The voltage of the grid is too	Check the grid input power.
UV	Bus undervoltage		Check the related function code
	fault	Overvoltage stall protection is	settings.
		not enabled.	
		Grid voltage too low.	Check the grid voltage.
		The motor rated current is set	Reset the rated current of the
OL1	Motor overload	incorrectly.	motor.
		Motor stall or load jumps	Check the load and adjust torque
		violently.	boost.
		ACC is too fast.	Increase ACC time.
OL2	VFD overload	The motor in rotating is	Avoid restart after stop.
		restarted.	Check the grid voltage.

Fault code	Fault type	Possible cause	Solution
		Grid voltage too low.	Select the VFD with larger power.
		Load too large.	Select proper motor.
		Power is too small.	
SPI	Input phase loss	Phase loss or violent fluctuation	Check the input power.
351	Input phase loss	occurred on inputs R, S, and T.	Check the installation wiring.
	Phase loss on	Phase loss occurred to U, V, W	Check the output wiring
SPO		output (or the three phases of	Check the output wiring. Check the motor and cable.
	output side	motor is asymmetrical).	
OH1	Rectifier module	Air duct is blocked or fan is	
OIII	overheating	damaged.	Ventilate the air duct or replace
	Inverter module	Ambient temperature is too	the fan.
OH2	overheat	high.	Lower the ambient temperature.
	Fault	Long-time overload running.	
EF	External fault	SI external fault input terminal	Check external device input
EF	External lault	acts.	Check external device input.
			Set a proper baud rate.
		Baud rate set improperly.	Check the wiring of
	RS485	Communication line fault.	communication interfaces.
CE	communication	Incorrect communication	Set the communication address
0E	fault	address.	correctly.
	Tault	Communication suffers from	Replace or change the wiring to
		strong interference.	enhance the anti-interference
			capacity.
		Poor contact of the connector of	
	Current detection	control board.	Check the connector and re-plug.
ItE	fault	Hall component damaged.	Replace the hall component.
	Tault	Exception occurred to	Replace the main control board.
		amplification circuit.	
		Motor capacity does not match	Change the VFD model, or adopt
		with the VFD capacity. This fault	V/F mode for control;
		may occur if the capacity	Set proper motor type and
	Motor autotuning	difference exceeds five power	nameplate parameters;
tE	fault	classes.	Empty the motor load and carry
	Tault	Motor parameter is set	out autotuning again.
		improperly;	Check the motor wiring and
		The parameters gained from	parameter setup;
		autotuning deviate sharply from	Check whether the upper limit

Fault code	Fault type	Possible cause	Solution
		the standard parameters.	frequency is larger than 2/3 of the
		Autotuning timeout.	rated frequency.
EEP	EEPROM operation fault	Control parameter reading/writing error. EEPROM damaged.	Press STOP/RST to reset. Replace the main control board.
PIDE	PID feedback offline fault	PID feedback offline. PID feedback source disappears.	Check PID feedback signal wires. Check PID feedback source.
bCE	Braking unit/ resistor fault	Braking circuit fault or braking pipe damage. Small resistance of the external braking resistor. Braking resistor short circuited or PB-to-PE short circuited.	Check the braking unit, and replace with a new braking pipe. Increase the braking resistance. Check the braking resistor wiring.
END	Running time reached	Actual VFD running time longer than internally set running time.	Ask the supplier to adjust the preset running time.
OL3	Electronic overload fault	The VFD reports overload pre-alarm according to the setting.	Check the load and overload pre-alarm threshold
PCE	Keypad communication fault	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad or mainboard communication circuit error.	Check the keypad cable to determine whether a fault occurs. Check for and remove the external interference source. Replace the hardware and seek maintenance services.
UPE	Parameter upload error	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad or mainboard communication circuit error.	Check for and remove the external interference source. Replace the hardware and seek maintenance services. Replace the hardware and seek maintenance services.
DNE	Parameter download error	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad data storage error	Check for and remove the external interference source. Replace the hardware and seek maintenance services. Re-back up the data on the keypad.

Troubleshooting

Fault code	Fault type	Possible cause	Solution
ETH1	To-ground short-circuit fault 1	VFD output is short connected to the ground. Current detection circuit is faulty. Actual motor power setup deviates sharply from the VFD power.	Check whether the motor wiring is normal. Replace the hall component. Replace the main control board; Reset the motor parameters properly.
ETH2	To-ground short-circuit fault 2	VFD output is short connected to the ground. Current detection circuit is faulty. Actual motor power setup deviates sharply from the VFD power.	Check whether the motor wiring is normal. Replace the hall component. Replace the main control board; Reset the motor parameters properly.
dEu	Speed deviation fault	The load is too heavy or stalled.	Check the load to ensure it is proper, and increase the detection time; Check whether the control parameters are set properly.
STo	Mal-adjustment fault	SM control parameters are set incorrectly. Autotuned parameters are not accurate. The VFD is not connected to the motor.	Check the load and ensure the load is normal. Check whether control parameters are set correctly. Increase the maladjustment detection time.
LL	Electronic underload fault	The VFD reports underload pre-alarm according to the setting.	Check the load and overload pre-alarm threshold.
ENC10	Encoder offline fault	Encoder line sequence is wrong, or signal wires are poorly connected.	Check the encoder wiring.
ENC1D	Encoder reversal fault	The encoder speed signal is contrary to the motor running direction.	Reset encoder direction.
ENC1Z	Encoder Z pulse offline fault	Z signal wires are disconnected.	Check the wiring of Z signal.
OT	Motor	Motor overtemperature input	Check the wiring of the motor

Fault code	Fault type	Possible cause	Solution
	overtemperature fault	terminal is valid. The temperature detection resistance is abnormal. Long-time overload running or exception occurred.	overtemperature input terminal (terminal function 57). Check whether the temperature sensor is proper; Check the motor, and perform
STO	Safe torque off	Safe torque off function is enabled by external forces.	maintenance on the motor.
STL1	Exception occurred to safe circuit of channel 1	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel 1	Check whether terminal wiring of STO is proper and firm enough; Check whether the external switch of STO can work properly; Replace the control board.
STL2	Exception occurred to safe circuit of channel 2	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel 2	Check whether terminal wiring of STO is proper and firm enough; Check whether the external switch of STO can work properly; Replace the control board.
STL3	Exception occurred to channel 1 and channel 2	Hardware fault occurred to STO circuit.	Replace the control board.
CrCE	Safety code FLASH CRC check fault	Control board is faulty.	Replace the control board.
E-Err	Repetitive expansion card type	The two inserted expansion cards are of the same type	You should not insert two cards with the same type. Check the type of expansion card, and remove one card after power-off.
ENCUV	Encoder UVW loss fault	No electric level variation occurred to UVW signal	Check the wiring of UVW; Encoder is damaged.
F1-Er	Failed to identify the expansion card in card slot 1	There is data transmission in interfaces of card slot 1, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on.

Fault code	Fault type	Possible cause	Solution
			Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
F2-Er	Failed to identify the expansion card in card slot 2	There is data transmission in interfaces of card slot 2, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
F3-Er	Failed to identify the expansion card in card slot 3	There is data transmission in interfaces of card slot 3, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
C1-Er	Communication timeout of expansion card at card slot 1	There is no data transmission in interface at card slot 1.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
C2-Er	Communication timeout of expansion card at card slot 2	There is no data transmission in interface at card slot 2.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the

Fault code	Fault type	Possible cause	Solution
			insertion port after power-off.
C3-Er	Communication timeout of expansion card at card slot 3	There is no data transmission in interface at card slot 3.	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
E-DP	PROFIBUS card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.
E-NET	Ethernet card communication timeout fault	There is no data transmission between the communication card and the upper computer.	Check whether the communication card wiring is loose or dropped.
E-CAN	CANopen card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.
E-PN	PROFINET card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.
E-CAT	EtherCAT card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.
E-BAC	BACNet card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.
E-DEV	DeviceNet card communication timeout fault	There is no data transmission between the communication card and the upper computer (or PLC).	Check whether the communication card wiring is loose or dropped.

Fault code	Fault type	Possible cause	Solution
SECAN	CAN master/slave card communication timeout fault	There is no data transmission between the CAN master and slave communication cards.	Check whether the communication card wiring is loose or dropped.
S-Err	Master/slave synchronous CAN slave fault	Fault occurred to one of the CAN slave VFDs.	Detect the CAN slave VFD and analyze the corresponding fault cause.
dIS	VFD disabled	The input terminal selects VFD enabling, but the terminal signal is invalid.	Check the input terminal setting and terminal signal.
tbE	Contactor feedback fault	The contactor feedback circuit is disconnected or in poor contact. The contactor feedback detection time is too short.	Check the contactor feedback circuit. Increase the detection time P91.05 to a proper value.
FAE	Brake feedback fault	The brake feedback circuit is disconnected or in poor contact. The brake feedback detection time is too short.	Check the brake feedback circuit. Increase the detection time <u>P90.32</u> to a proper value.
tPF	Torque verification fault	The torque verification current, moment force setting, and torque verification fault detection time are set improperly.	Set the torque verification current, moment force setting, and torque verification fault detection time <u>P90.30</u> properly. Check whether the motor rated power is set correctly.
StC	Operating lever zero-position fault	The operating lever does not return to the zero position. The operating lever zero-position signal is adhered.	Put the operating lever to the zero position. Check out the operating lever zero-position signal.
LSP	Low-speed run protection fault	Running speed too low.	Check whether the running speed is continuously lower than <u>P92.03</u> .
tCE	Terminal command exception	The terminal gives both the upward and downward commands at the same time.	Check the input terminal signal.
POE	Power on Terminal command	The terminal command is detected at power-on.	Check whether <u>P01.18</u> is set to enable the VFD reports a fault when a terminal command is valid

Fault code	Fault type	Possible cause	Solution
	exception		at power-on. Check the input terminal signal.
SLE	Loose rope protection fault	The hook rope is abnormal. The downward loose rope parameter setting is improper.	Check whether the hook rope is normal. Check whether the downward loose rope detection torque is proper.
bE	Brake failure	The brake force is insufficient. The brake detection parameter setting is improper.	Check whether the brake is normal. Check whether the brake slip parameter setting is proper.
ELS	Master/salve position synchronization fault	The encoder pulse difference between the master and slave is too great. The pulse threshold setting is improper.	Check the encoders for the master and slave. Check whether the pulse threshold of the slave is too small.
AdE	Analog speed reference deviation fault	If the speed is given by analog, the analog voltage is greater than 1.0V after zero-position detection is complete.	Check the analog wiring and current voltage value.
OtE1	PT100 overtemperature fault	The current environment temperature is too high. PT100 detection circuit is abnormal. PT100 overtemperature protection setting is improper.	Check the current environment temperature. Check PT100 circuit. Check whether PT100 overtemperature protection point is too small.
OtE2	PT1000 overtemperature fault	The current environment temperature is too high. PT1000 detection circuit is abnormal. PT1000 overtemperature protection setting is improper.	Check the current environment temperature. Check PT1000 circuit. Check whether PT1000 overtemperature protection point is too small.
SFE	Set frequency fault	The set frequency is too small.	Check whether the frequency reference is smaller than the set frequency protection point.
PtcE	PTC overtemperature fault	The current environment temperature is too high.	Check the current environment temperature.

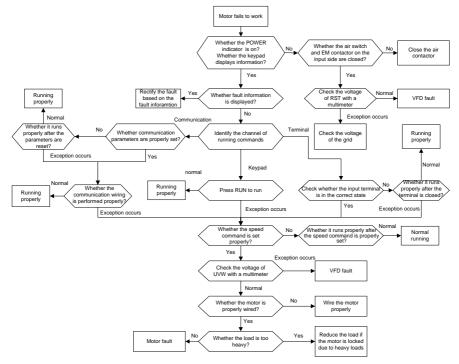
E.

Fault code	Fault type	Possible cause	Solution			
E-OvL	Overload fault	Load too heavy.	Check whether load is too heavy. Check whether P92.46 (Mechanism overload protection point) is too small.			
E-OS	Overspeed fault	Motor overspeed.	Check whether P92.34 is too small.			
E-dS	Stalling fault	Motor suffers stalling.	Check whether the brake can be opened properly. Check whether P92.36 is too small.			

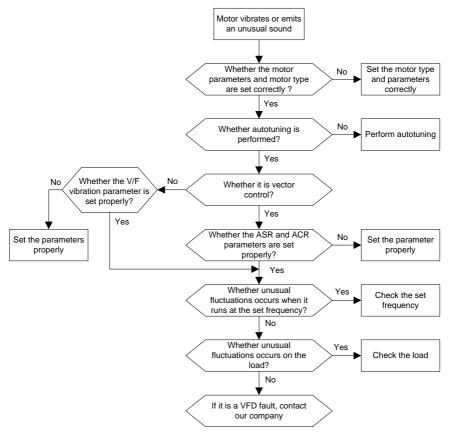
8.5.2 Alarms and solutions

Alarm code	Alarm type	Possible cause	Solution
A-SPI	Input phase loss alarm	During stop, a loss of either input phase R, S, or T occurs or fluctuation is great.	Check the input power source and wiring.
A-LU	Upward position limit alarm	The input terminal has set the upward limited position reaching function, and there is a signal reference to the terminal.	Check whether the allowed highest position point has been reached. Check the input terminal signal.
A-Ld	Downward position limit alarm)	The input terminal has set the downward limited position reaching function, and there is a signal reference to the terminal.	Check whether the allowed lowest position point has been reached. Check the input terminal signal.
A-LvP	Low voltage alarm	The bus voltage is too low.	Check whether the voltage protection point is too high. Check whether the grid voltage or rectifier module is abnormal.
A-OL	Overload protection alarm	The load is too heavy. The overload protection parameter is set is improperly.	Check whether the load is too heavy. Check whether the overload protection point is too small.
A-bS	Brake failure alarm	The brake force is insufficient. The encoder is abnormal.	Check whether the brake works normally. Check whether the encoder

Alarm code	Alarm type	Possible cause	Solution
		The zero servo detection parameter is set is improperly.	works normally. Check whether the zero servo tolerance pulse threshold is too small.
A-FA	Brake feedback alarm	The brake feedback circuit is disconnected or in poor contact. The brake feedback detection time is too short.	Check the brake feedback circuit. Increase the detection time <u>P90.32</u> to a proper value.
A-SL	Loose rope protection alarm	The hook rope is abnormal. The downward loose rope parameter setting is improper.	Check whether the hook rope is normal. Check whether the downward loose rope detection torque is proper.
A-Ot1	PT100 overtemperature alarm	The current environment temperature is too high. PT100 overtemperature protection setting is improper.	Check the current environment temperature. Check whether PT100 overtemperature protection point is too small.
A-Ot2	PT1000 overtemperature alarm	The current environment temperature is too high. PT1000 overtemperature alarm setting is improper.	Check the current environment temperature. Check whether PT1000 overtemperature protection point is too small.
A-Pt1	PT100 disconnection alarm	PT100 connection circuit is opened.	Check PT100 connection circuit.
A-Pt2	PT1000 disconnection alarm	PT1000 connection circuit is opened.	Check PT1000 connection circuit.
A-Ptc	PTC overtemperature alarm	The actual environment temperature is too high.	Check the current environment temperature.
A-AOt	Al detected overtemperature alarm	The actual environment temperature is too high. Abnormal temperature sensor detection line. Improper overtemperature protection setting.	Check the temperature sensor wiring. Check whether P92.24 is too small.
A-OvL	Weighing alarm	Motor overloaded.	P92.04 Overload protection current detection value

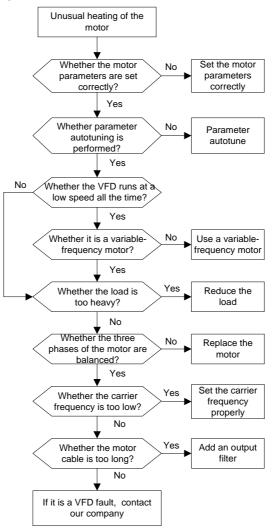

Note: After fault recovery, the corresponding alarm is automatically reset.

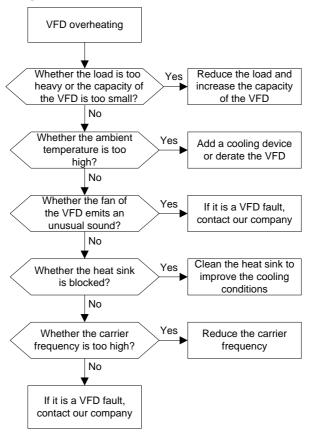
8.5.3 ther status

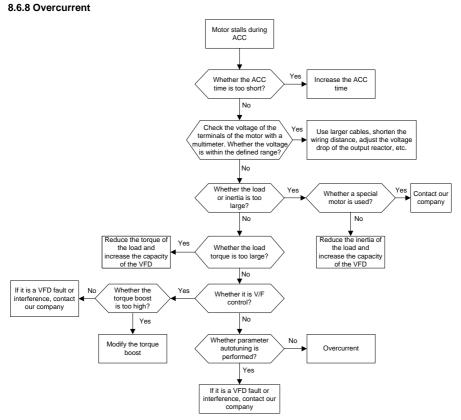

Displayed code	Status type	Possible cause	Solution	
PoFF	System power failure	The system is powered off or the bus voltage is too low.	Check the grid conditions.	

8.6 Analysis on common faults


8.6.1 Motor fails to work


8.6.2 Motor vibrates


8.6.3 Overvoltage


8.6.5 Motor overheating

8.6.6 VFD overheating

8.6.7 Motor stalls during ACC Motor stalls during ACC Yes Increase the ACC Whether the ACC time is too short? time No Check the voltage of the Yes Use larger cables, shorten the terminals of the motor with a wiring distance, adjust the voltage nultimeter. Whether the voltage drop of the output reactor, etc. is within the defined range? No Whether the load Yes Yes Whether a special Contact our or inertia is too motor is used? company large? No No Reduce the inertia of Reduce the torque of Yes the load and Whether the load the load and increase the capacity torque is too large? increase the capacity of the VFD of the VFD No If it is a VFD fault or No Whether the Yes Whether it is V/F interference, contact torque boost control? is too high? our company No Yes Whether parameter No Modify the torque autotuning is Overcurrent boost performed? Yes If it is a VFD fault or interference, contact our company

8.7 Countermeasures on common interference

8.7.1 Interference on meter switches and sensors

Interference phenomenon

Pressure, temperature, displacement, and other signals of a sensor are collected and displayed by a human-machine interaction device. The values are incorrectly displayed as follows after the VFD is started:

- 1. The upper or lower limit is wrongly displayed, for example, 999 or -999.
- 2. The display of values jumps (usually occurring on pressure transmitters.
- 3. The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher than the common temperature (usually occurring on thermocouples).
- A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, the VFD is expected to decelerate when the upper pressure limit of the

compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.

- After the VFD is started, the display of all kinds of meters (such as frequency meter and current meter) that are connected to the analog output (AO) terminal of the VFD is severely affected, displaying the values incorrectly.
- 6. Proximity switches are used in the system. After the VFD is started, the indicator of a proximity switch flickers, and the output level flips.

Solution

- 1. Check and ensure that the feedback cable of the sensor is 20 cm or farther away from the motor cable.
- 2. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5 Ω).
- Try to add a safety capacitor of 0.1µF to the signal end of the feedback signal terminal of the sensor.
- Try to add a safety capacitor of 0.1µF to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
- 5. For interference on meters connected to the AO terminal of a VFD, if AO uses current signals of 0 to 20 mA, add a capacitor of 0.47 μ F between the AO and GND terminals; and if AO uses voltage signals of 0 to 10 V, add a capacitor of 0.1 μ F between the AO and GND terminals.

Note:

- When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter.; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.
- If a large number of meters or sensors are disturbed. It is recommended that you configure an external C2 filter on the input power end of the VFD. For models of filters, see D.8 Filters.

8.7.2 Interference on RS485 communication

The interference described in this section on RS485 communication mainly includes communication delay, out of synchronization, occasional power-off, or complete power-off that occurs after the VFD is started.

If the communication cannot be implemented properly, regardless of whether the VFD is running, the exception is not necessarily caused by interference. You can find out the causes as follows:

1. Check whether the 485 communication bus is disconnected or in poor contact.

2. Check whether the two ends of line A or B are connected reversely.

3. Check whether the communication protocol (such as the baud rate, data bits, and check bit) of the VFD is consistent with that of the upper computer.

If you are sure that communication exceptions are caused by interference, you can resolve the problem through the following measures:

- 1. Perform simple inspection.
- 2. Arrange the communication cables and motor cables in different cable trays.
- 3. In multi-VFD application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between VFDs, which can improve the anti-interference capability.
- 4. In multi-VFD application scenarios, check and ensure that the driving capacity of the master is sufficient.
- 5. In the connection of multiple VFDs, you need to configure one 120 Ω terminal resistor on each end.

Solution

- 1. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
- Do not connect the VFD and motor to the same ground terminal as the upper computer (PLC, HMI, and touch screen). It is recommended that you connect the VFD and motor to the power ground, and connect the upper computer separately to a ground stud.
- Try to short the signal reference ground terminal (GND) of the VFD with that of the upper computer controller to ensure that ground potential of the communication chip on the control board of the VFD is consistent with that of the communication chip of the upper computer.
- 4. Try to short GND of the VFD to its ground terminal (PE).
- 5. Try to add a safety capacitor of 0.1 µF on the power terminal of the upper computer (PLC, HMI, and touch screen). During this process, pay attention to the voltage of the power supply and the voltage endurance capability of the capacitor. Alternatively, you can use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Put the power L/N line or +/- line of the upper computer through the magnet ring in the same direction and wind 8 coils around the magnet ring.

8.7.3 Failure to stop and indicator shimmering due to motor cable coupling

Interference phenomenon

1. Failure to stop

In a VFD system where an S terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the S terminal cannot

be used to stop the inverter.

2. Indicator shimmering

After the VFD is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmer, blink, or emit unusual sounds unexpectedly.

Solution

- 1. Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable.
- 2. Add a safety capacitor of 0.1 μ F between the digital input terminal (S) and the COM terminal.
- 3. Connect the digital input terminal (S) that controls the start and stop to other idle digital input terminals in parallel. For example, if S1 is used to control the start and stop and S4 is idle, you can try to short connect S1 to S4 in parallel.

Note: If the controller (such as PLC) in the system controls more than 5 VFDs at the same time through digital input terminals (S), this scheme is not applicable.

8.7.4 Leakage current and interference on RCD

VFDs output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of a VFD and the heat sink and that between the stator and rotor of a motor may inevitably cause the VFD to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of a VFD may cause misoperation of a RCD.

- 1. Rules for selecting RCDs
- (1) VFD systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the VFDs are grounded reliably.
- (2) For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions need to be longer than 20 ms. For example, 1s, 0.5s, and 0.2s.
- (3) For circuits in VFD systems, electromagnetic RCDs are recommended. Electromagnetic RCDs have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD		
	Requiring highly sensitive, accurate, and stable		
Low cost, high sensitivity, small in volume,	zero-phase sequence current transformer, using		
susceptible to voltage fluctuation of the grid and	permalloy high-permeability materials, complex		
ambient temperature, and weak	process, high cost, not susceptible to voltage		
anti-interference capability	fluctuation of the power supply and ambient		
	temperature, strong anti- interference capability		

2. Solution to RCD misoperation (handling the VFD)

- (1) Try to remove the jumper cap at "EMC/J10" on the middle casing of the VFD.
- (2) Try to reduce the carrier frequency to 1.5 kHz (P00.14=1.5).
- (3) Try to modify the modulation mode to "3PH modulation and 2PH modulation" (P08.40=0).
- 3. Solution to RCD misoperation (handling the system power distribution)
- (1) Check and ensure that the power cable is not soaking in water.
- (2) Check and ensure that the cables are not damaged or spliced.
- (3) Check and ensure that no secondary grounding is performed on the neutral wire.
- (4) Check and ensure that the main power cable terminal is in good contact with the air switch or contactor (all screws are tightened).
- (5) Check 1PH powered devices, and ensure that no earth lines are used as neutral wires by these devices.
- (6) Do not use shielded cables as VFD power cables and motor cables.

8.7.5 Live device chassis

Phenomenon

After a VFD is started, there is sensible voltage on the chassis, and you may feel an electric shock when touching the chassis. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the VFD is powered on but not running.

Solution

- 1. If there is power distribution grounding or ground stud on the site, ground the cabinet chassis of the drive system through the power ground or stud.
- If there is no grounding on the site, you need to connect the motor chassis to the ground terminal PE of the VFD, and ensure that the jumper at "EMC/J10" on the middle casing of the VFD is shorted.

9 Maintenance

9.1 What this chapter contains

This chapter describes how to carry out preventive maintenance on the VFD.

9.2 Periodical inspection

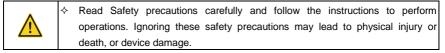
Little maintenance is required when the VFD is installed in an environment that meets requirements. The following table describes the routine maintenance periods recommended by INVT.

Check scope		Item	Method	Criterion
Ambient environment		Check the temperature, and humidity, and whether there is vibration, dust, gas, oil spray, and water droplets in the environment.		The requirements stated in this manual are met.
		Check whether there are foreign matters, such as tools, or dangerous substances placed nearby.	Visual inspection	There are no tools or dangerous substances placed nearby.
,	Voltage	Check the voltage of the main circuit and control circuit.	Use multimeters or other instruments for measurement.	The requirements stated in this manual are met.
		Check the display of information.	Visual inspection	The characters are displayed properly.
ł	Keypad	Check whether characters are not completely displayed.	Visual inspection	The requirements stated in this manual are met.
		Check whether the bolts loose or come off.	Screw them up.	No exception occurs.
Mair		Check whether the machine is deformed, cracked, or damaged, or their color changes due to overheating and aging.	Visual inspection	No exception occurs.
Main circuit	Common	Check whether there are stains and dust attached.	Visual inspection	No exception occurs. Note: Discoloration of copper bars does not mean that they cannot work

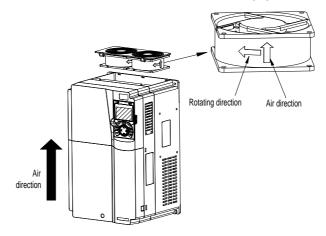
Che	eck scope	Item	Method	Criterion
	•			properly.
	Conductor	Check whether conductors are deformed or color change for overheat.	Visual inspection	No exception occurs.
	and wire	Check whether the wire sheaths are cracked or their color changes.	Visual inspection	No exception occurs.
	Terminal block	Check whether there is damage.	Visual	No exception occurs.
		Check whether there is electrolyte leakage, discoloration, cracks, and chassis expansion.	Visual inspection	No exception occurs.
	Filter capacitor	Check whether the safety valves are released.	Determine the service life based on the maintenance information, or measure them through electrostatic capacity.	No exception occurs.
		Check whether the electrostatic capacity is measured as required.	Use instruments to measure the capacity.	Electrostatic capacity ≥ initial value x 0.85
		Check whether there is displacement caused due to overheat.	Olfactory and visual inspection	No exception occurs.
	Resistor	Check whether the resistors are disconnected.	Visual inspection, or remove one end of the connection cable and use a multimeter for measurement.	Resistance range: ±10% (of the standard resistance)
	Transformer and reactor	Check whether there is unusual vibration sounds or smells.	Auditory, olfactory, and visual inspection	No exception occurs.

Che	eck scope	Item	Method	Criterion	
		Check whether there are vibration		No exception	
	EM contactor	sounds in the workshop.	inspection	occurs.	
	and relay	Check whether the contacts are in	Visual	No exception	
		good contact.	inspection	occurs.	
		Check whether the screws and		No exception	
		connectors loose.	Screw them up.	occurs.	
			Olfactory and	N	
		Check whether there is unusual	visual	No exception	
		smell or discoloration.	inspection	occurs.	
		Check whether there are cracks,	Visual	No exception	
Control	Control PCB	damage, deformation, or rust.	inspection	occurs.	
circuit	and connector		Visual		
			inspection, and		
			determine the	No evention	
		Check whether there is electrolyte	service life	No exception occurs.	
		leakage or deformation.	based on the	occurs.	
			maintenance		
			information.		
			Auditory and		
			visual		
		Check whether there are unusual	inspection, and	The rotation is	
		sounds or vibration.	turn the fan	smooth.	
			blades with your		
			hand.		
		Check whether the bolts loose.	Screw them up.	No exception	
	Cooling fan	Check whether the boils loose.	Screw menn up.	occurs.	
Cooling			Visual		
system			inspection, and		
		Check whether there is	determine the	No exception	
		decoloration caused due to	service life	occurs.	
		overheat.	based on the	occurs.	
			maintenance		
			information.		
	Ventilation	Check whether there are foreign	Visual	No overstion	
		matters blocking or attached to the		No exception	
	duct	cooling fan, air inlets, or air outlets.	inspection	occurs.	

For more details about maintenance, contact the local INVT office, or visit our website www.invt.com, and choose **Support** > **Services**.


9.3 Cooling fan

The service life of the cooling fan of the VFD is more than 25,000 hours. The actual service life of the cooling fan is related to the use of the VFD and the temperature in the ambient environment.


You can view the running duration of the VFD through P07.14 (Accumulated running time).

The increase of the bearing noise indicates a fan fault. If the VFD is applied in a key position, replace the fan once the fan starts to generate unusual noise. You can purchase spares of fans from INVT.

Cooling fan replacement:

- 1. Stop the VFD, disconnect the AC power supply, and wait for a time no shorter than the waiting time designated on the VFD.
- Open the cable clamp to loose the fan cable (for the 380V 1.5–30 kW VFD models, the middle casing needs to be removed).
- 3. Disconnect the fan cable.
- 4. Remove the fan with a screwdriver.
- 5. Install a new fan in the VFD in the reverse steps. Assemble the VFD. Ensure that the air direction of the fan is consistent with that of the VFD, as shown in the following figure.

6. Power on the VFD.

9.4 Capacitor

9.4.1 Capacitor reforming

If the VFD has been left unused for a long time, you need to follow the instructions to reform the DC bus capacitor before using it. The storage time is calculated from the date the VFD is delivered.

Storage time	Operation principle			
Less than 1 year	No charging operation is required.			
1 to 2 years	The VFD needs to be powered on for 1 hour before the first running command.			
	Use a voltage controlled power supply to charge the VFD:			
	Charge the VFD at 25% of the rated voltage for 30 minutes			
2 to 3 years	and then charge it at 50% of the rated voltage for 30 minutes			
	at 75% for another 30 minutes			
	and finally charge it at 100% of the rated voltage for 30 minutes.			
	Use a voltage controlled power supply to charge the VFD:			
	Charge the VFD at 25% of the rated voltage for 2 hours,			
More than 3 years	and then charge it at 50% of the rated voltage for 2 hours,			
	at 75% for another 2 hours,			
	and finally charge it at 100% of the rated voltage for 2 hours.			

The method for using a voltage controlled power supply to charge the VFD is described as follows:

The selection of a voltage controlled power supply depends on the power supply of the VFD. For VFDs with an incoming voltage of 1PH/3PH 230 V AC, you can use a 230 V AC/2 A voltage regulator. Both 1PH and 3PH VFDs can be charged with a 1PH voltage controlled power supply (connect L+ to R, and N to S or T). All the DC bus capacitors share one rectifier, and therefore they are all charged.

For VFDs of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380 V drive device, use a resistor of 1 k Ω /100W. If the voltage of the power supply is no higher than 380 V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

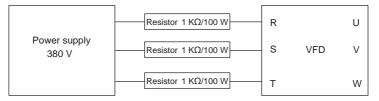


Figure 9-2 Charging circuit example of driving devices of 380V

9.4.2 Electrolytic capacitor replacement

Read the safety precautions carefully and follow the instructions to perform operations. Ignoring these safety precautions may lead to physical injury or death, or device damage.

The electrolytic capacitor of a VFD must be replaced if it has been used for more than 35,000 hours. For details about the replacement, contact the local INVT office.

9.5 Power cable

∻

Read the safety precautions carefully and follow the instructions to perform operations. Ignoring these safety precautions may lead to physical injury or death, or device damage.

- 1. Stop the VFD, disconnect the power supply, and wait for a time no shorter than the waiting time designated on the VFD.
- 2. Check the connection of the power cables. Ensure that they are firmly connected.
- 3. Power on the VFD.

10 Communication protocol

10.1 What this chapter contains

This chapter describes the communication protocols supported by the VFD.

The VFD provides RS485 communication interfaces and adopts the master/slave communication based on the international standard Modbus communication protocol. You can implement centralized control (setting commands for controlling the VFD, modifying the running frequency and related function parameters, and monitoring the running status and fault information of the VFD) through PC/PLC, upper control computers, or other devices to meet specific application requirements.

10.2 Modbus protocol introduction

Modbus is a software protocol, a common language used in electronic controllers. By using this protocol, a controller can communicate with other devices through transmission lines. It is a general industrial standard. With this standard, control devices produced by different manufacturers can be connected to form an industrial network and be monitored in a centralized way.

The Modbus protocol provides two transmission modes, namely American Standard Code for Information Interchange (ASCII) and Remote Terminal Unit (RTU). On one Modbus network, all the device transmission modes, baud rates, data bits, check bits, end bits, and other basic parameters must be set consistently.

A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with one slave or all the slaves by sending broadcast messages. For separate access commands, a slave needs to return a response. For broadcast messages, slaves do not need to return responses.

10.3 Application of Modbus

The VFD uses the Modbus RTU mode and communicates through RS485 interfaces.

10.3.1 RS485

RS485 interfaces work in half-duplex mode and send data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, in which one wire is defined as A (+), and the other B (-). Generally, if the positive electrical level between the transmission drives A and B ranges from +2V to +6V, the logic is "1"; and if it ranges from -2V to -6V, the logic is "0". On the VFD terminal block, the 485+ terminal corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits sent in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56 mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate (bps)	Max. transmission distance (meter)	Baud rate (bps)	Max. transmission distance (meter)	
2400BPS	1800m	9600BPS	800m	
4800BPS	1200m	19200BPS	600m	

In long-distance RS485 communication, it is recommended that you use shielded cables, and use the shielding layer as the ground wire.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120 Ω terminal resistor when the transmission distance is long.

10.3.1.1 When one VFD is used

Figure 10-1 is the Modbus wiring diagram for the network with one VFD and PC. Generally, PCs do not provide RS485 interfaces, and therefore you need to convert an RS232 or USB interface of a PC to an RS485 interface through a converter. Then, connect end A of the RS485 interface to the 485+ port on the terminal block of the VFD, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

When the wiring is completed, select the correct port (for example, COM1 to connect to the RS232-RS485 converter) for the upper computer of the PC, and keep the settings of basic parameters such as communication baud rate and data check bit consistent with those of the VFD.

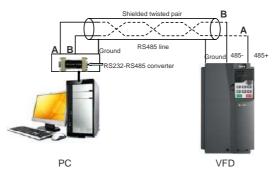


Figure 10-1 RS485 wiring diagram for the network with one VFD **10.3.1.2 When multiple VFDs are used**

In the network with multiple VFDs, chrysanthemum connection and star connection are commonly used.

According to the requirements of the RS485 industrial bus standards, all the devices need to be

connected in chrysanthemum mode with one 120 Ω terminal resistor on each end, as shown in Figure 10-2. Figure 10-3 simplified wiring diagram, and Figure 10-4 is the practical application diagram.

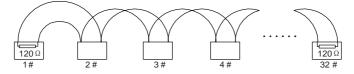


Figure 10-2 Onsite chrysanthemum connection diagram

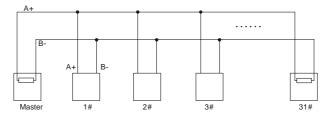


Figure 10-3 Simplified chrysanthemum connection diagram

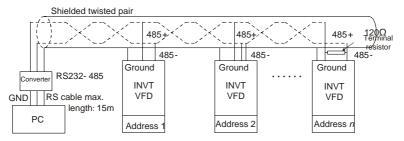


Figure 10-4 Practical application diagram of chrysanthemum connection

Figure 10-5 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in this figure, the two devices are devices 1# and 15#).

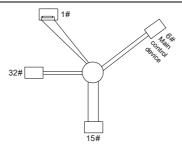


Figure 10-5 Star connection

Use shielded cable, if possible, in multi-VFD connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

10.3.2 RTU

10.3.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can send more data at the same baud rate.

Code system

• 1 start bit

- 7 or 8 data bits; the minimum valid bit is sent first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).

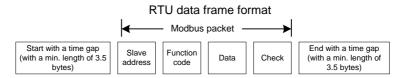
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 end bit (with check performed), 2 bits (without check)

Error detection domain

Cyclic redundancy check (CRC)

The following tables provide the data formats.

11-bit character frame (Bits 1 to 8 are data bits)


Start bit BIT1 BIT2 BIT3	BIT4 BIT5 BI ⁻	IT6 BIT7 BIT8	Check bit End bit
--------------------------	---------------------------	---------------	----------------------

10-bit character frame (Bits 1 to 7 are data bits)

Start bit B	BIT1 BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	End bit
-------------	-----------	------	------	------	------	------	--------------	---------

In a character frame, only the data bits carry information. The start bit, check bit, and end bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and end bits consistently.

In RTU mode, a new frame must be always preceded by a time gap with a minimum length of 3.5 bytes. On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are sent in the following sequence: slave address, operation command code, data, and CRC check character. Each byte sent in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is sent, a similar transmission interval (with a minimum length of 3.5 bytes) is used to indicate that the frame transmission ends. Then, the transmission of a new frame starts.

The information of a frame must be sent in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table lists the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)
	Communication address: 0-247 (in decimal system) (0
ADDR (slave address domain)	indicates the broadcast address)
CMD (function domain)	03H: read slave parameters
CMD (function domain)	06H: write slave parameters
DATA (N-1)	
	Data of 2xN bytes, main content of the communication as well
DATA (0)	as the core of data exchanging
(data domain)	
CRC CHK low-order bits	Detection value: CRC (16 bits)
CRC CHK high-order bits	
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.3.2.2 RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors. Without check, the data receiving device cannot identify data errors and may make an incorrect response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be transmitted are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

CRC check mode

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, end, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least

significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

```
crc cal value (unsigned char*data value, unsigned
unsigned
           int
                                                                          char
data length)
ł
    int i;
    unsigned int crc value=0xffff;
    while (data length--)
     ł
         crc value^=*data value++;
         for(i=0;i<8;i++)
              if(crc value&0x0001)
                   crc value=(crc value>>1)^0xa001;
              else
                   crc value=crc value>>1;
          }
     }
    return(crc value);
1
```

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

10.4 RTU command code and communication data

10.4.1 Command code 03H, reading N words (continuously up to 16 words)

The command code 03H is used by the master to read data from the VFD. The count of data to be read depends on the "data count" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by

"H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and running status of the VFD.

For example, starting from the data address of 0004H, to read two contiguous pieces of data (that is, to read content from the data addresses 0004H and 0005H), the frame structures are described in the following.

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR (address)	01H
CMD (command code)	03H
Start address high-order bits	00H
Start address low-order bits	04H
Data count high-order bits	00H
Data count low-order bits	02H
CRC low-order bits	85H
CRC high-order bits	CAH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

RTU master command (from the master to the VFD)

"START" and "END" are "T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)", indicating that a time gap with a minimum length of 3.5 bytes must be kept before RS485 communication is executed. The time gap is used to distinguish one message from another so that the two messages are not regarded as one message.

"ADDR" is "01H", indicating that the command is sent to the VFD whose address is 01H. The ADDR information occupies one byte.

"CMD" is "03H", indicating that the command is used to read data from the VFD. The CMD information occupies one byte.

"Start address" indicates that data reading is started from this address. It occupies two bytes, with the MSB on the left and LSB on the right.

"Data count" indicates the count of data to be read (unit: word). "Start address" is "0004H" and "Data count" is 0002H, indicating that data is to be read from the data addresses of 0004H and 0005H.

CRC check occupies two bytes, with the LSB on the left and MSB on the right.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (from the VFD to the master)

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	01H

CMD	03H
Number of bytes	04H
High-order bits in 0004H	13H
Low-order bits in 0004H	88H
High-order bits in 0005H	00H
Low-order bits in 0005H	00H
CRC low-order bits	7EH
CRC high-order bits	9DH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

The definition of the response information is described as follows:

"ADDR" is "01H", indicating that the message is sent from the VFD whose address is 01H. The ADDR information occupies one byte.

"CMD" is "03H", indicating that the message is a VFD response to the 03H command from the master for reading data. The CMD information occupies one byte.

"Number of bytes" indicates the number of bytes between a byte (not included) and the CRC byte (not included). The value "04" indicates that there are four bytes of data between "Number of bytes" and "CRC LSB", that is, "High-order bits in 0004H", " Low-order bits in 0004H", " High-order bits in 0005H", and "Low-order bits in 0005H".

A piece of data is two bytes, with the MSB on the left and LSB on the right. From the response, the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the low-order bits on the left and high-order bits on the right.

10.4.2 Command code 06H, writing a word

This command is used by the master to write data to the VFD. One command can be used to write only one piece of data. It is used to modify the parameters and running mode of the VFD.

For example, to write 5000 (1388H) to 0004H of the VFD whose address is 02H, the frame structures are described in the following.

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02H
CMD	06H
High-order bits of data writing address	00H

RTU master command (from the master to the VFD)

Low-order bits of data writing address	04H
High-order bits of to-be-written data	13H
Low-order bits of to-be-written data	88H
CRC low-order bits	C5H
CRC high-order bits	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

RTU slave response (from the VFD to the master)

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02H
CMD	06H
High-order bits of data writing address	00H
Low-order bits of data writing address	04H
Data content high-order bits	13H
Data content low-order bits	88H
CRC low-order bits	C5H
CRC high-order bits	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

Note: Sections 10.4.1 and 10.4.2 mainly describe the command formats. For the detailed application, see section 10.4.8.

10.4.3 Command code 08H, diagnosis

Sub-function code description:

Sub-function code	Description
0000	Return data based on query requests

For example, to query about the circuit detection information about the VFD whose address is 01H, the query and return strings are the same, and the format is described as follows.

RTU master command:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5
	bytes)
ADDR	01H
CMD	08H
Sub-function code high-order bits	00H
Sub-function code low-order bits	00H
Data content high-order bits	12H

Data content low-order bits	ABH
CRC CHK low-order bits	ADH
CRC CHK high-order bits	14H
END	T1-T2-T3-T4 (time gap with a min. length of 3.5
	bytes)

RTU slave response:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	01H
CMD	08H
Sub-function code high-order bits	00H
Sub-function code low-order bits	00H
Data content high-order bits	12H
Data content low-order bits	ABH
CRC CHK low-order bits	ADH
CRC CHK high-order bits	14H
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

10.4.4 Command code 10H, continuous writing

The command code 10H is used by the master to write data to the VFD. The quantity of data to be written is determined by "Data quantity", and a maximum of 16 pieces of data can be written.

For example, to write 5000 (1388H) and 50 (0032H) respectively to 0004H and 0005H of the VFD whose slave address is 02H, the frame structure is as follows.

RTU master command (from the master to the VFD)

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02H
CMD	10H
High-order bits of data writing address	00H
Low-order bits of data writing address	04H
Data count high-order bits	00H
Data count low-order bits	02H
Number of bytes	04H
High-order bits in 0004H	13H
Low-order bits in 0004H	88H
High-order bits in 0005H	00H
Low-order bits in 0005H	32H

CRC low-order bits	C5H
CRC high-order bits	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5
END	bytes)

RTU slave response (from the VFD to the master)

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02H
CMD	10H
High-order bits of data writing address	00H
Low-order bits of data writing address	04H
Data count high-order bits	00H
Data count low-order bits	02H
CRC low-order bits	C5H
CRC high-order bits	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

10.4.5 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the state information, and setting related function parameters of the VFD.

10.4.5.1 Function code address format rules

The address of a function code consists of two bytes, with the high-order bits on the left and low-order bits on the right. The high-order bits ranges from 00 to ffH, and the low-order bits also ranges from 00 to ffH. The high-order bits is the hexadecimal form of the group number before the dot mark, and low-order bits is that of the number behind the dot mark. Take P05.06 as an example: The group number is 05, that is, the high-order bits of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the low-order bits is the hexadecimal form of 06. Therefore, the function code address is 0506H in the hexadecimal form. For example, the parameter address of P10.01 is 0A01H.

Function code	Name	Description	Setting range	Default	Modify
P10.00		0: Stop after running once 1: Keep running with the final value after running once 2: Cyclic running	0–2	0	0
P10.01	•	0: No power-failure memory 1: With power-failure memory	0–1	0	0

Note:

- The parameters in the P99 group are set by the manufacturer and cannot be read or modified. Some parameters cannot be modified when the VFD is running; some cannot be modified regardless of the VFD status. Pay attention to the setting range, unit, and description of a parameter when modifying it.
- The service life of the Electrically Erasable Programmable Read-Only Memory (EEPROM) may be reduced if it is frequently used for storage. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the MSB of the corresponding function code address from 0 to 1. For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the value in the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

10.4.5.2 Description of other Modbus function addresses

In addition to modifying the parameters of the VFD, the master can also control the VFD, such as starting and stopping it, and monitoring the operation status of the VFD. The following table describes other function parameters.

Function	Address	Data description	R/W
		0001H: Run forward	
		0002H: Run reversely	
		0003H: Jog forward	
Communication-based	2000H	0004H: Jog reversely	R/W
control command	20001	0005H: Stop	D/ W
		0006H: Coast to stop (in emergency)	
		0007H: Fault reset	
		0008H: Jogging to stop	
	2001H	Communication-based frequency setting (0-Fmax;	
		unit: 0.01 Hz)	
	2002H	PID reference (0-1000, in which 1000 corresponds	
		to 100.0%)	
	2003H	PID feedback (0-1000, in which 1000 corresponds	R/W
Communication-based		to 100.0%)	1.7.00
setting address	2004H	Torque setting (-3000–3000, in which 1000	R/W
county address	200	corresponds to 100.0% of the motor rated current)	
	2005H	Upper limit setting of forward running frequency	R/W
	200011	(0–Fmax; unit: 0.01 Hz)	
	2006H	Upper limit setting of reverse running frequency	R/W
		(0–Fmax; unit: 0.01 Hz)	
	2007H	Upper limit of the electromotion torque (0-3000,	R/W

Function	Address	ress Data description		
		1000 corresponding to 100.0% of the motor rated		
		current)		
	2008H	Braking torque upper limit. (0–3000, in which 1000	R/W	
	200011	corresponds to 100.0% of the VFD rated current)	10,00	
		Special CW		
		Bit0–1=00: Motor 1 =01: Motor 2		
		Bit2=1 Enable speed/torque control switchover		
		=0: Disable speed/torque control switchover		
	2009H	Bit3=1 Clear electricity consumption data	R/W	
		=0: Keep electricity consumption data		
		Bit4=1 Enable pre-excitation =0: Disable		
		pre-excitation		
		Bit5=1 Enable DC braking =0: Disable DC braking		
	200 411	Virtual input terminal command (0x000–0x3FF)		
	200AH	Corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/ S3/ S2/S1	R/W	
		Virtual output terminal command (0x00–0x0F)		
	200BH	Corresponding to local RO2/RO1/HDO/Y1	R/W	
		Voltage setting (used when V/F separation is		
		implemented)		
	200CH	(0-1000, 1000 corresponding to 100.0% of the	R/W	
		motor rated voltage)		
		AO setting 1 (-1000-+1000, in which 1000		
	200DH	corresponding to 100.0%)	R/W	
200EH		AO setting 2 (-1000-+1000, in which 1000	5.44	
		corresponding to 100.0%)	R/W	
		0001H: Forward running		
		0002H: Reverse running		
	040011	0003H: Stopped	P	
VFD status word 1	2100H	0004H: Faulty	R	
		0005H: POFF		
		0006H: Pre-exciting		
VFD status word 2		Bit0: =0: Not ready to run =1: Ready to run		
		Bit1–2=00: Motor 1 =01: Motor 2		
	2101H	Bit3: =0: AM =1: SM	R	
	210111	Bit4=0: No overload pre-alarm		
		=1: Overload pre-alarm		
		Bit5–Bit6=00: Keypad-based control		

Function	Address	Data description		R/W
		=01: Terminal-bas	ed control	
		=10: Communication-based control		
		Bit7: Reserved		
		Bit8=0: Speed control =1: Torque of	control	
		Bit9=0: Non position control		
		=1: Position control		
		Bit10-Bit11: =0: Vector 0 =1: Vec	tor 1	
			d-loop vector	
		= 3: Space voltage vector		
VFD fault code	2102H	See the description of fault types.		R
VFD identification	2103H	GD3500x01A0		R
code	21030	GD3500x01A0		ĸ
Running frequency	3000H	0–Fmax (Unit: 0.01Hz)		R
Set frequency	3001H	0–Fmax (Unit: 0.01Hz)		R
Bus voltage	3002H	0.0–2000.0V (Unit: 0.1V)		R
Output voltage	3003H	0–1200V (Unit: 1V)		R
Output current	3004H	0.0–3000.0A (Unit: 0.1A)		R
Rotational speed	3005H	0–65535 (Unit: 1RPM)		R
Output power	3006H	-300.0–300.0% (Unit: 0.1%)		R
Output torque	3007H	-250.0–250.0% (Unit: 0.1%)		R
Closed-loop setting	3008H	-100.0–100.0% (Unit: 0.1%)		R
Closed-loop feedback	3009H	-100.0–100.0% (Unit: 0.1%)		R
		000–3F	Compatible	
Input state	300AH	Corresponding to the local HDIB/	with CHF100A	R
		HDIA/S4/S3/S2/S1	and CHV100	
		000–0F	communication	
Output state	300BH	Corresponding to local	addresses	R
		RO2/RO1/HDO/Y1		
Analog input 1	300CH	0.00–10.00V (Unit: 0.01V)		R
Analog input 2	300DH	0.00–10.00V (Unit: 0.01V)		R
Analog input 3	300EH	-10.00–10.00V (Unit: 0.01V)		R
Analog input 4	300FH			R
Read input of HDIA	3010H	0.00–50.00kHz (Unit: 0.01Hz)		R
high-speed pulse	501011			IX.
Read input of HDIB	3011H			R
high-speed pulse	501111			ix i
Read the actual step	3012H	0–15		R

Goodrive350-19 series VFD for crane

Function	Address	Data description		R/W
of multi-step speed				
External length value	3013H	0–65535		R
External counting value	3014H	0–65535		R
Torque setting	3015H	-300.0–300.0% (Unit: 0.1%)		R
VFD identification code	3016H			R
Fault code	5000H			R

The Read/Write (R/W) characteristics indicate whether a function parameter can be read and written. For example, "Communication-based control command" can be written, and therefore the command code 06H is used to control the VFD. The R characteristic indicates that a function parameter can only be read, and W indicates that a function parameter can only be written.

Note: Some parameters in the preceding table are valid only after they are enabled. Take the running and stop operations as examples, you need to set "Running command channel" (P00.01) to "Communication", and set "Communication running command channel" (P00.02) to the Modbus communication channel. For another example, when modifying "PID setting", you need to set "PID reference source" (P09.00) to Modbus communication.

The following table describes the encoding rules of device codes (corresponding to the identification code 2103H of the VFD).

8 high-order bits	Meaning	8 low-order bits	Meaning
		0x08	GD35 vector VFD
01		0x09	GD35-H1 vector VFD
01 GD	GD	0x0a	GD300 vector VFD
		0xa0	GD350 vector VFD

10.4.6 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. For example, 50.12 Hz cannot be represented in the hexadecimal form. In such cases, multiply 50.12 by 100 to obtain an integer 5012, and then 50.12 can be represented as 1394H in the hexadecimal form (5012 in the decimal form).

In the process of multiplying a non-integer by a multiple to obtain an integer, the multiple is referred to as a fieldbus scale.

The fieldbus scale depends on the number of decimals in the value specified in "Detailed parameter description" or "Default value". If there are n decimals in the value, the fieldbus scale m is the n^{th} -power of 10. Take the following table as an example, m is 10.

Function code	Name	Description	Setting range	Default	Modify
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when P01.15 is 2)	0.00–3600.0	0.0s	0
P01.21	Power-off restart selection	0: Disable restart 1: Enable restart	0–1	0	0

The value specified in "Setting range" or "Default" contains one decimal place, and therefore the fieldbus scale is 10. If the value received by the upper computer is 50, the value of "Wake-up-from-sleep delay" of the VFD is 5.0 (5.0=50/10).

To set "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then send the following write command:

<u>01</u> <u>06</u> <u>01 14</u> <u>00 32</u> <u>49 E7</u>

VFD	Write	Parameter	Parameter	CRC
address	command	address	data	

After receiving the command, the VFD converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer sends the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the VFD:

The parameter data is 0032H, that is, 50, and therefore 5.0 is obtained based on the fieldbus scale (50/10=5.0). In this case, the master identifies that "Wake-up-from-sleep delay" is 5.0s.

10.4.7 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is sent. In this case, the VFD returns an error message response.

Error message responses are sent from the VFD to the master. The following table lists the codes and definitions of the error message responses.

Code	Name	Definition
01H	Invalid command	The command code received by the upper computer is not allowed to be executed. The possible causes are as follows: The function code is applicable only on new devices and is not implemented on this device. The slave is in the faulty state when processing this request.

Code	Name	Definition
	Invalid data	For the VFD, the data address in the request of the upper computer is
02H	address	not allowed. In particular, the combination of the register address and
	address	the number of the to-be-sent bytes is invalid.
		The received data domain contains a value that is not allowed. The
03H	Invalid data	value indicates the error of the remaining structure in the combined
030	value	request. Note: It does not mean that the data item submitted for
		storage in the register includes a value unexpected by the program.
04H	Operation	The parameter is set to an invalid value in the write operation. For
04H	failure	example, a function input terminal cannot be set repeatedly.
0511	Incorrect	The password entered in the password verification address is different
05H	password	from that set by P07.00.
	la como et dete	The data frame sent from the upper computer is incorrect in the length,
06H	Incorrect data	or in the RTU format, the value of the CRC check bit is inconsistent with
	frame	the CRC value calculated by the lower computer.
0711	Parameter	The parameter to be modified in the write operation of the upper
07H	read-only	computer is a read-only parameter.
	Parameter	
0011	cannot be	The parameter to be modified in the write operation of the upper
08H	modified in	computer cannot be modified during the running of the VFD.
	running	
	. .	If the upper computer does not provide the correct password to unlock
09H	Password	the system to perform a read or write operation, the error of "system
	protection	being locked" is reported.

When returning a response, the slave uses a function code domain and fault address to indicate whether it is a normal response (no error) or exception response (an error occurs). In a normal response, the slave returns the corresponding function code and data address or sub-function code. In an exception response, the slave returns a code that is equal to a normal code, but the first bit is logic 1.

For example, if the master sends a request message to a slave for reading a group of function code address data, the following code is generated:

0 0 0 0 0 0 1 1 (03H in the hexadecimal form)

For a normal response, the same code is returned.

For an exception response, the following code is returned:

1 0 0 0 0 1 1 (83H in the hexadecimal form)

In addition to the modification of the code, the slave returns a byte of exception code that describes the cause of the exception. After receiving the exception response, the typical processing of the

master is to send the request message again or modify the command based on the fault information.

For example, to set the "Running command channel" (P00.01, the parameter address is 0001H) of the VFD whose address is 01H to 03, the command is as follows:

address command

00 01 address

98 OE

However, the "Running command channel" ranges from 0 to 2. The value 3 is out of the setting range. In this case, the VFD returns an error message response as shown in the following:

The exception response code 86H (generated based on the highest-order bit "1" of the write command 06H) indicates that it is an exception response to the write command (06H). The error code is 04H, which indicates "Operation failure".

10.4.8 Read/Write operation examples

For the formats of the read and write commands, see section 10.4.1 and 10.4.2.

10.4.8.1 Read command 03H examples

Example 1: Read status word 1 of the VFD whose address is 01H. From the table of other function parameters, we can see that the parameter address of status word 1 of the VFD is 2100H.

The read command transmitted to the VFD is as follows:

<u>01</u>	<u>03</u>	<u>21 00</u>	<u>00 01</u>	<u>8E 36</u>		
VFD address	Read command	Parameter address	Data quantity	CRC		
ne that the following response is returned:						
01	03	02	00 03	F8 45		

Number

of bytes

Assum

01 address

03 Read command

00 03 Data content

CRC

The data content returned by the VFD is 0003H, which indicates that the VFD is in the stopped state.

Example 2: View information about the VFD whose address is 03H, including "Type of current fault" (P07.27) to "Type of last but four fault" (P07.32) of which the parameter addresses are 071BH to 0720H (contiguous 6 parameter addresses starting from 071BH).

The command transmitted to the VFD is as follows:

address

Read Start command address

07 1B

00 06

6 parameters in total

CRC

Assume that the following response is returned:

<u>03</u> <u>03</u> <u>0C</u> <u>00</u> <u>23</u> <u>00</u> <u>23</u> <u>00</u> <u>23</u> <u>00</u> <u>23</u> <u>00</u> <u>23</u> <u>00</u> <u>23</u> <u>5F</u> <u>D2</u>

VFD Read Number of Type of Type of Type of last Type of last Type of last Type of last CRC address command bytes current fault last fault but one fault but two fault but three fault but four fault

According to the returned data, all the fault types are 0023H, that is, 35 in the decimal form, which means the maladjustment fault (STo).

10.4.8.2 Write command 06H examples

Example 1: Set the VFD whose address is 03H to be forward running. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000H, and 0001H indicates forward running, as shown in the following figure.

Function	Address	Data description	R/W
	2000H	0001H: Run forward	
Communication-based control command		0002H: Run reversely	
		0003H: Jog forward	
		0004H: Jog reversely	
		0005H: Stop	W
		0006H: Coast to stop (in	
		emergency)	
		0007H: Fault reset	
		0008H: Jogging to stop	

The command transmitted by the master is as follows:

3

address

Urite Command

06

<u>20 00</u>

Parameter

address

00 01 Forward

running

<u>42 28</u>

CRC

If the operation is successful, the following response is returned (same as the command transmitted by the master):

VFD address

Write Parameter

Forward running <u>42 28</u> CRC

Example 2: Set the max. output frequency to 100 Hz for the VFD with the address of 03H.

00

Function code	Name	Description	Setting range	Default	Modify
P00.03	Max. output frequency	P00.04–600.00H (400.00Hz)	100.00–600.00	50.00Hz	0

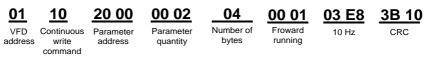
According to the number of decimals, the fieldbus scale of the "Max. output frequency" (P00.03) is 100. Multiply 100 Hz by 100. The value 10000 is obtained, and it is 2710H in the hexadecimal form.

The command transmitted by the master is as follows:

If the operation is successful, the following response is returned (same as the command transmitted by the master):

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
VFD address	Write command	Parameter address	Parameter data	CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.


10.4.8.3 Example of continuously writing command 10H

Example 1: Set the VFD whose address is 01H to be forward running at the frequency of 10 Hz. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000H. 0001H indicates forward running, and the address of "Communication-based value setting" is 2001H, as shown in the following figure. 10 Hz is 03E8H in the hexadecimal form.

Function	Address	Address Data description		
		0001H: Run forward		
		0002H: Run reversely		
		0003H: Jog forward		
Communication-based	2000H	0004H: Jog reversely	R/W	
control command		0005H: Stop		
		0006H: Coast to stop (in emergency)		
		0007H: Fault reset		
		0008H: Jogging to stop		
	2001H	Communication-based frequency setting (0-Fmax;		
Communication-based	d 2001H	unit: 0.01 Hz)	R/W	
setting address	2002H	PID reference (0–1000, in which 1000 corresponds	r./ VV	
	20020	to 100.0%)		

In the actual operation, set P00.01 to 2 and P00.06 to 8.

The command transmitted by the master is as follows:

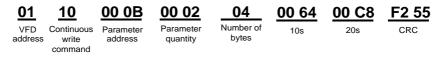
If the operation is successful, the following response is returned:

20 00 00 02

address

VFD Continuous address write command

Parameter Parameter quantity


CRC

Example 2: Set "Acceleration time" of the VFD whose address is 01H to 10s, and "Deceleration time" to 20s.

	P00.11	ACC time 1		Model	0
	P00.11 ACC time 1				0
ſ		DEC time 1	P00.11, P00.12 setting range: 0.0–3600.0s	Model	0
	P00.12 DEC time 1			depended	0

The address of P00.11 is 000B, 10s is 0064H in the hexadecimal form, and 20s is 00C8H in the hexadecimal form.

The command transmitted by the master is as follows:

If the operation is successful, the following response is returned:

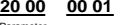
Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

10.4.8.4 Example of Modbus communication commissioning

A PC is used as the host, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The upper computer commissioning software is the serial port commissioning assistant Commix, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

StopBits: 1 💌 🔽 No CRC Pause
New Line 🔽 Show Interval
(s) Send
🤟 🔽 by Ente
2

First, set the serial port to **COM1**. Then, set the baud rate consistently with P14.01. The data bits, check bits, and end bits must be set consistently with P14.02. If the RTU mode is selected, you need to select the hexadecimal form **Input HEX**. To set the software to automatically execute the CRC function, you need to select **ModbusRTU**, select **CRC16 (MODBU SRTU)**, and set the start byte to **1**. After the auto CRC check function is enabled, do not enter CRC information in commands. Otherwise, command errors may occur due to repeated CRC check.


The commissioning command to set the VFD whose address is 03H to be forward running is as follows:

Note:

- Set the address (P14.00) of the VFD to 03.
- Set "Channel of running commands" (P00.01) to "Communication", and set "Communication channel of running commands" (P00.02) to the Modbus communication channel.
- Click Send. If the line configuration and settings are correct, a response transmitted by the VFD is received as follows:

<u>42 28</u>

address con

Write

Parameter address Forward running

CRC

address com

10.4.9 Common communication faults

Common communication faults include the following:

- No response is returned.
- The VFD returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, end bits, and check bits are inconsistent with those set on the VFD.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The resistor connected to 485 terminals on the terminal block of the VFD is set incorrectly.

11 CW and SW module for port crane applications

In port crane applications, CANopen, PROFIBUS, and PROFINET communication control words (CWs) and status words (SWs) are controlled by bit. INVT CWs and SWs are expressed in format of value. You can choose the CWs and SWs special for port crane applications or INVT standard CWs and SWs based on your requirements.

Function code	Name	Description	Setting
P16.56	CW and SW selection	0–1 0: Standard CWs and SWs 1: CWs and SWs special for port crane applications	1

11.1 CWs for port crane applications

Bit	Name	Value	State/Description
0		1	Run forward
1		1	Run reversely
2		1	Jog forward
3	COMMAND BYTE	1	Jog reversely
4	Communication-based	1	Decelerate to stop
5	control command	1	Emergency stop
6		1	Fault reset
7		1	Enabling run
8	Enabling hook	1	Enable
8	synchronization (Reserved)	0	Disable
		00	MOTOR GROUP 1 SELECTION
0.40	MOTOR GROUP SELECTION	01	MOTOR GROUP 2 SELECTION
9–10		02	MOTOR GROUP 3 SELECTION
		03	MOTOR GROUP 4 SELECTION
11		1	Switch to torque control
11	Torque/speed switchover	0	Switch to speed control
12	External fault	1	External fault
10		1	Enable
13	PRE-EXCIATION	0	Disable
4.4	Torque limit setting	1	Valid
14	(Reserved)	0	Invalid
45	Zana kanana ak ian	1	Enable
15	Zero-torque giving	0	Disable

11.2 SWs for port crane applications

Bit	Name	Value	State/Description
0		1	Running forward
1		1	Running reversely
2		1	Stopped
3	RUN STATUS BYTE	1	In fault
4	RUN STATUS DITE	1	Ready
5		1	Pre-exciting
6		1	Brake closed
7		1	Warning
8		1	Status of multi-step speed terminal 1
9	Multi-step speed terminal	1	Status of multi-step speed terminal 2
10	status	1	Status of multi-step speed terminal 3
11		1	Status of multi-step speed terminal 4
		0(0x00)	Feedback from motor 1
10 10		1(0x01)	Feedback from motor 2
12–13	Motor group feedback	2(0x10)	Feedback from motor 3
		3(0x11)	Feedback from motor 4 (Reserved)
		0(0x00)	Keypad controlled
14–15	Run mode selection	1(0x01)	Terminal controlled
14-15		2(0x10)	Communication controlled
		3(0x11)	Reserved

11.3 CANopen/PROFIBUS PZD communication

Received parameters

Function code	Name	Description
P15.02	Received PZD2	0: Disable
P15.03	Received PZD3	1: Set frequency (0–Fmax (Unit: 0.01Hz))
P15.04	Received PZD4	2: PID reference (0–1000, in which 1000 corresponds to
P15.05	Received PZD5	100.0%)
P15.06	Received PZD6	3: PID feedback (0–1000, in which 1000 corresponds to
P15.07	Received PZD7	100.0%)
P15.08	Received PZD8	4: Torque setting (-3000-+3000, in which 1000 corresponds to
P15.09	Received PZD9	100.0% of the motor rated current)
P15.10	Received PZD10	5: Setting of the upper limit of forward running frequency
P15.11	Received PZD11	(0–Fmax, unit: 0.01 Hz)
P15.12	Received PZD12	 Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz)

Function code	Name	Description
		7: Upper limit of the electromotive torque (0–3000, in which
		1000 corresponds to 100.0% of the motor rated current)
		8: Upper limit of braking torque (0–3000, in which 1000
		corresponds to 100% of the motor rated current)
		9: Virtual input terminal command. Range: 0x000–0x1FF
		10: Virtual output terminal command. Range: 0x00–0x0F
		11: Voltage setting (special for V/F separation)
		(0-1000, in which 1000 corresponds to 100% of the motor
		rated voltage)
		12: AO1 output setting 1 (-1000-+1000, in which 1000
		corresponds to 100.0%)
		13: AO2 output setting 2 (-1000-+1000, in which 1000
		corresponds to 100.0%)
		14: High-order bit of position reference (signed)
		15: Low-order bit of position reference (unsigned)
		16: High-order bit of position feedback (signed)
		17: Low-order bit of position feedback (unsigned)
		18: Position feedback setting flag (position feedback can be
		set only after this flag is set to 1 and then to 0)
		19: Numerator of the e-gear
		20: Denominator of the e-gear
		21–25: Reserved
		26: Encoder high-order bits
		27: Encoder low-order bits
		28–46: Reserved
		47: ACC time (0–1000 corresponding to 0.0–100.0s)
		48: DEC time (0–1000 corresponding to 0.0–100.0s)

When encoder pulses are used, P20.15 must be used together.

Function code	Name	Description	Setting
	Speed	24: Pulses are obtained through CANopen or	
P20.15	measurement	PROFIBUS-DP communication to measure the	2
	mode	speed.	

When ACC/DEC time is used, P16.57 must be used together.

Function code	Name	Description	Setting
P16.57	Communication set	1: PROFIBUS DP or CANopen	1
F 10.57	ACC/DEC time selection	communication	1

Sent parameters

Function code	Name	Description		
P15.13	Sent PZD2	0: Disable		
P15.14	Sent PZD3	1: Running frequency (x100, Hz)		
P15.15	Sent PZD4	2: Set frequency (x100, Hz)		
P15.16	Sent PZD5	3: Bus voltage (x10, V)		
P15.17	Sent PZD6	4: Output voltage (x1, V)		
P15.18	Sent PZD7	5: Output current (x10, A)		
P15.19	Sent PZD8	6: Actual output torque (x10, %)		
P15.20	Sent PZD9	7: Actual output power (x10, %)		
P15.21	Sent PZD10	8: Rotation speed of running (x1, RPM)		
P15.22	Sent PZD11	9: Linear speed of running (x1, m/s)		
P15.23	Sent PZD12	 10: Ramp reference frequency 11: Fault code 12: Al1 input (* 100, V) 13: Al2 input (* 100, V) 14: Al3 input (* 100, V) 15: HDIA frequency value (*100, kHz) 16: Terminal input status 17: Terminal output status 18: PID reference (x100, %) 19: PID feedback (x100, %) 20: Motor rated torque 21: High-order bit of position reference (signed) 22: Low-order bit of position feedback (signed) 23: High-order bit of position feedback (signed) 24: Low-order bit of position feedback (unsigned) 25: Status word 26: HDIB frquency value (*100, kHz) 27: Pulse count high-order bits 28: Pulse count low-order bits 29: Brake status 30–51: Reserved 52: Temperature 		

E.

Function code	Name	Description	
		53: U-phase current transient value	
		54: V-phase current transient value	
		55: W-phase current transient value	
		56–57: Reserved	
		58: Load weight	
		59: Current peak value	
		60: Filter torque setting (filter after running)	
		61: Mwh electromotive status (high-order bits)	
		62: Kwh electromotive status (low-order bits) (*10,Kwh)	
		63: Mwh electricity generation status (high-order bits)	
		64: Kwh electricity generation status (low-order bits) (*10,Kwh)	

11.4 PROFINET PZD communication

Received parameters.

Function code	Name	Description		
P16.32	Received PZD2	0: Disable		
P16.33	Received PZD3	1: Set frequency (0–Fmax (Unit: 0.01Hz))		
P16.34	Received PZD4	2: PID reference (0–1000, in which 1000 corresponds to 100.0%)		
P16.35	Received PZD5	3: PID feedback (0–1000, in which 1000 corresponds to 100.0%)		
P16.36	Received PZD6	4: Torque setting (-3000-+3000, in which 1000 corresponds to		
P16.37	Received PZD7	100.0% of the motor rated current)		
P16.38	Received PZD8	5: Setting of the upper limit of forward running frequency (0-Fmax,		
P16.39	Received PZD9	unit: 0.01 Hz)		
P16.40	Received PZD10	6: Setting of the upper limit of reverse running frequency (0-Fmax		
P16.41	Received PZD11	unit: 0.01 Hz)		
		 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current) 8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor rated current) 		
		9: Virtual input terminal command. Range: 0x000–0x1FF		
P16.42	Received PZD12	10: Virtual output terminal command. Range: 0x00–0x0F11: Voltage setting (special for V/F separation)		
		(0–1000, in which 1000 corresponds to 100% of the motor rated		
		voltage)		
		12: AO1 output setting 1 (-1000-+1000, in which 1000		
		corresponds to 100.0%)		
		13: AO2 output setting 2 (-1000-+1000, in which 1000		

Function code	Name	Description		
		corresponds to 100.0%)		
		14: High-order bit of position reference (signed)		
		15: Low-order bit of position reference (unsigned)		
		16: High-order bit of position feedback (signed)		
		17: Low-order bit of position feedback (unsigned)		
		18: Position feedback setting flag (position feedback can be set		
		only after this flag is set to 1 and then to 0)		
		19: Numerator of the e-gear		
		20: Denominator of the e-gear		
		21–25: Reserved		
		26: Encoder high-order bits		
		27: Encoder low-order bits		
		28–46: Reserved		
		47: ACC time (0–1000 corresponding to 0.0–100.0s)		
		48: DEC time (0–1000 corresponding to 0.0–100.0s)		

When encoder pulses are used, P20.15 must be used together.

Function code	Name	Description	Setting
P20.15	Speed measurement mode	24: Pulses are obtained through PROFINET communication to measure the speed.	3

When ACC/DEC time is used, P16.57 must be used together.

Function code	Name	Description	Setting
P16.57	Communication set ACC/DEC time selection	2: PROFINET communication	2

Sent parameters

Function code	Name	Description	
P16.43	Sent PZD2	0: Disable	
P16.44	Sent PZD3	1: Running frequency (x100, Hz)	
P16.45	Sent PZD4	2: Set frequency (x100, Hz)	
P16.46	Sent PZD5	3: Bus voltage (x10, V)	
P16.47	Sent PZD6	4: Output voltage (x1, V)	
P16.48	Sent PZD7	5: Output current (x10, A)	

Function code	Name	Description		
P16.49	Sent PZD8	6: Actual output torque (x10, %)		
P16.50	Sent PZD9	7: Actual output power (x10, %)		
P16.51	Sent PZD10	8: Rotation speed of running (x1, RPM)		
P16.52	Sent PZD11	9: Linear speed of running (x1, m/s)		
		10: Ramp reference frequency		
		11: Fault code		
		12: Al1 input (* 100, V)		
		13: Al2 input (* 100, V)		
		14: Al3 input (* 100, V)		
		15: HDIA frequency value (*100, kHz)		
		16: Terminal input status		
		17: Terminal output status		
		18: PID reference (x100, %)		
		19: PID feedback (x100, %)		
		20: Motor rated torque		
		21: High-order bit of position reference (signed)		
		22: Low-order bit of position reference (unsigned)		
		23: High-order bit of position feedback (signed)		
		24: Low-order bit of position feedback (unsigned)		
		25: Status word		
P16.53	Sent PZD12	26: HDIB frquency value (*100, kHz)		
		27: Pulse count high-order bits		
		28: Pulse count low-order bits		
		29: Brake status		
		30–51: Reserved		
		52: Temperature		
		53: U-phase current transient value		
		54: V-phase current transient value		
		55: W-phase current transient value		
		56–57: Reserved		
		58: Load weight		
		59: Current peak value		
		60: Filter torque setting (filter after running)		
		61: Mwh electromotive status (high-order bits)		
		62: Kwh electromotive status (low-order bits) (*10, Kwh)		
63: Mwh electricity generation status (high-		63: Mwh electricity generation status (high-order bits)		
		64: Kwh electricity generation status (low-order bits) (*10, Kwh)		

Appendix A Expansion card

A.1 Model definition

<u>EC</u> -	PG	<u>5</u>	<u>01</u> ·	- <u>05</u>
1	2	3	4	(5)

Symbol	Description	Naming example		
1	Product category	EC: Expansion card		
2	Card category	PG: PG card		
3	Technical version	Indicates the generation of a technical version by using odd numbers. For example, 1, 3, and 5 indicate the 1st, 2nd, and 3rd generations of the technical version.		
		01: Incremental PG card + frequency-divided output		
	Distinguishing code	02: Sine/Cosine PG card + pulse direction setting + frequency-divided output		
		03: UVW PG interface + pulse direction setting + frequency-divided output		
4		04: Resolver PG interface + pulse direction setting + frequency-divided output		
		05: Incremental PG card + pulse direction setting + frequency-divided output		
		06: Absolute PG interface + pulse direction setting + frequency-divided output		
		07: simplified incremental PG card		
		00: Passive		
(5)	Working power	05: 5V		
0	Working power	12: 12-15V		
		24: 24V		

<u>EC-TX 5 01</u>

1 2 3 4

Symbol	Description	Naming example	
1	Product category	EC: Expansion card	
2	Card category	TX: communication expansion card	
3	Technical version	Indicates the generation of a technical version by using odd numbers. For example, 1, 3, and 5 indicate the 1st, 2nd, and 3rd generations of the technical version.	
4	Distinguishing code	01: Bluetooth communication card 02: WIFI 03: PROFIBUS communication card 05: CANopen communication card 06: DeviceNet communication card 07: BACnet communication card 08: EtherCAT communication card 09: PROFINET communication card 10: Ethernet/IP communication card 11: CAN master/slave control communication card	

EC-IO 5 01-00 1 2 3 4 5

Symbol	Description	Naming example		
1	Product category	EC: Expansion card		
2	Card category	IO: I/O expansion card		
3	Technical version	Indicates the generation of a technical version by using odd numbers. For example, 1, 3, and 5 indicate the 1st, 2nd, and 3rd generations of the technical version.		
4	Distinguishing code	 01: Multiple-function I/O expansion card (4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and 2 relay outputs) 02: Digital I/O expansion card (4 digital inputs, 2 relay 		

Symbol	Description	Naming example			
		outputs, 1 PT100, and 1 PT1000)			
		03: Analog I/O card			
		04: Reserved 1			
		05: Reserved 2			
E C	Special				
5	requirement				

The following table lists expansion cards that the VFD supports. The expansion cards are optional and need to be purchased separately.

Name	Model	Specifications		
		●4 digital inputs		
		●1 digital output		
I/O expansion	EC-IO501-00	●1 analog input		
card 1	EC-10501-00	●1 analog output		
		 2 relay outputs: 1 double-contact output, and 1 		
		single-contact output.		
		●4 digital inputs		
		•1 PT100		
I/O expansion		•1 PT1000		
card 2	EC-IO502-00	 2 relay outputs: single-contact NO outputs 		
card 2		Note: The expansion card has been built into the 7.5kW and		
		higher VFD models but it is optional for the VFD models of		
		lower than 7.5kW. For details, see section 4.4.3.		
		 Supporting Bluetooth 4.0 		
		 With INVT mobile app, you can set the parameters and 		
		monitor the states of the VFD through Bluetooth		
Bluetooth	EC-TX501-1/	 The maximum communication distance in open 		
communication	EC-TX501-1/	environments is 30 m.		
card	EC- 17301-2	 EC-TX501-1 is equipped with a built-in antenna and 		
		applicable to molded case machines.		
		•EC-TX501-2 is configured with an external sucker antenna		
		and applicable to sheet metal machines.		
		Meeting IEEE802.11b/g/n		
WIFI		 With INVT mobile app, you can monitor the VFD locally or 		
communication	EC-TX502-2/	remotely through WIFI communication		
card	EC- TX502-2	 The maximum communication distance in open 		
Calu		environments is 30 m.		
		 EC-TX502-1 is equipped with a built-in antenna and 		

Name	Model	Specifications		
		applicable to molded case machines.		
		•EC-TX502-2 is configured with an external sucker antenna		
		and applicable to sheet metal machines.		
Profibus-DP communication card	EC-TX503	 Supporting the PROFIBUS-DP protocol 		
Ethernet communication card	EC-TX504	 Supporting Ethernet communication with INVT internal protocol Can be used in combination with INVT upper computer monitoring software INVT Workshop 		
CANopen communication card	EC-TX505	 Based on the CAN2.0A physical layer Supporting the CANopen protocol 		
CAN master/slave control communication card	EC-TX511	 Based on the CAN2.0B physical layer Adopting INVT proprietary master/slave control protocol 		
PROFINET communication card	EC-TX509	Supporting the PROFINET protocol		
Sin/Cos PG card	EC-PG502	 Applicable to Sin/Cos encoders with or without CD signals Supporting A, B, Z frequency-divided output Supporting pulse string reference input 		
Incremental PG card with UVW	EC-PG503-05	 Applicable to differential encoders of 5 V Supporting the orthogonal input of A, B, and Z Supporting pulse input of phases U, V, and W Supporting frequency-divided output of A, B, and Z Supporting the input of pulse string reference 		
Resolver PG card	EC-PG504-00	 Applicable to resolver encoders Supporting frequency-divided output of resolver-simulated A, B, Z Supporting the input of pulse string reference 		
Multi-function incremental PG card	EC-PG505-12	 Applicable to OC encoders of 5V or 12V Applicable to push-pull encoders of 5V or 12V Applicable to differential encoders of 5V Supporting the orthogonal input of A, B, and Z Supporting the frequency-divided output of A, B, and Z 		

Name	Model	Specifications		
		 Supporting the input of pulse string reference 		
Simplified		 Applicable to OC encoders of 5V or 12V 		
incremental PG	EC-PG507-12	 Applicable to push-pull encoders of 5V or 12V 		
card		 Applicable to differential encoders of 5V 		
24V simplified		Applicable to 24V OC encoders		
incremental PG	EC-PG507-24 • Applicable to 24V push-pull encoders			
card		Applicable to 24V differential encoders		
		 Supporting Ethernet communication with INVT internal 		
CAN-NET		protocol		
two-in-one		 Can be used in combination with INVT upper computer 		
communication	EC-TX511B	monitoring software INVT Workshop		
card		 Based on the CAN2.0A physical layer 		
		 Supporting the CANopen protocol 		

I/O expansion card 1 EC-IO501-00

I/O expansion card 2 EC-IO502-00

Bluetooth/WIFI communication card EC-TX501/502

PROFIBUS-DP communication card EC-TX503

Goodrive350-19 series VFD for crane

Expansion card

Ethernet communication card EC-TX504

Incremental PG card with UVW EC-PG503-05

CANopen/CAN master/slave control communication card EC-TX505/511

Resolver PG card EC-PG504-00

PROFINET communication card EC-TX509

Multifunction incremental PG card EC-PG505-12

Sin/Cos PG card EC-PG502

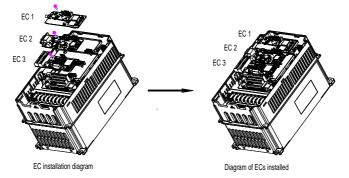
Simplified incremental PG card EC-PG507-12

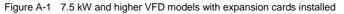
Expansion card

Goodrive350-19 series VFD for crane

24V simplified incremental PG card EC-PG507-24

CAN-NET two-in-one communication card EC- TX511B


A.2 Dimensions and installation


All expansion cards are of the same dimensions (108x39mm) and can be installed in the same way.

Comply with the following rules when installing or removing an expansion card:

- Ensure that no power is applied before installing the expansion card.
- The expansion card can be installed into any of the card slots SLOT1, SLOT2, and SLOT3.
- The 5.5 kW and lower VFD models can be configured with two expansion cards at the same time, and the 7.5 kW and higher VFD models can be configured with three expansion cards.
- If interference occurs on the external wires after expansion cards are installed, change their installation card slots flexibly to facilitate the wiring. For example, the connector of the connection cable of the DP card is large, so it is recommended to be installed in the SLOT1 card slot.
- To ensure high anti-interference capability in closed-loop control, you need to use a shielding wire in the encoder cable and ground the two ends of the shielding wire, that is, connect the shielding layer to the housing of the motor on the motor side, and connect the shielding layer to the PE terminal on the PG card side.

The following figure shows the installation diagram and the VFD with expansion cards installed.

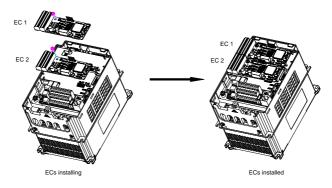


Figure A-2 5.5 kW and lower VFD models with expansion cards installed

Expansion card installation procedure:

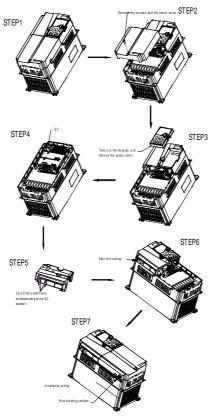


Figure A-3 Expansion card installation procedure

A.3 Wiring

Ground a shielded cable as follows:

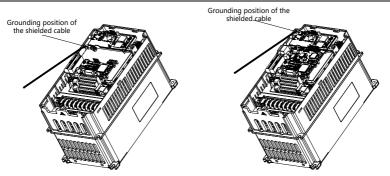
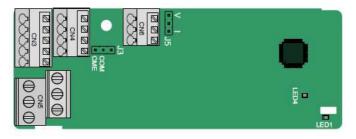



Figure A-4 Expansion card grounding diagram

A.4 Function description of I/O expansion card 1 (EC-IO501-00)

The terminals are arranged as follows:

CME and COM are shorted through J3 before delivery, and J5 is the jumper for selecting the output type (voltage or current) of AO2.

AI3			AI3 AO2			GND				
СОМ	CME	Y2	S5		Γ	RO3A	A ROS	BB F	RO3C]
PW	+24V	S6	S7	S8	_		RO4A		RO	4C

Indicator definition:

Indicator	Definition	Function			
LED1	Status indicator	This indicator is on when the expansion card is establishing a connection with the control board; it blinks periodically after the expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the expansion card is disconnected from the control board.			
LED4	Power indicator	This indicator is on after the I/O expansion card is powered on by the control board.			

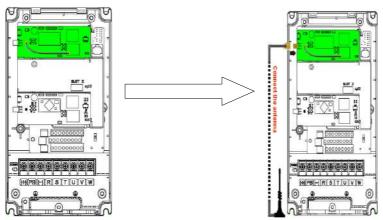
EC-IO501-00 can be used in scenarios where the I/O interfaces of VFD cannot meet the application requirements. It can provide 4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and two relay outputs. It is user-friendly, providing relay outputs through European-type screw terminals and other inputs and outputs through spring terminals.

Category	Symbol	Terminal	Description
Power supply	PW	External power	Used to provide input digital working power from the external to the internal Voltage range: 12–30V PW and +24V have been short connected before delivery.
Analog input/output	AI3—GND	Analog input 1	 Input range: For AI3, 0–10V or 0–20mA Input impedance: 20kΩ for voltage input or 250Ω for current input Set it to be voltage or current input through the corresponding function code. Resolution: 5mV when 10V corresponds to 50Hz Deviation: ±0.5%; input of 5V or 10mA or higher at the temperature of 25°C
	AO2—GND	Analog output 1	 Output range: 0–10V or 0–20mA Whether it is voltage or current output can be set through J5. Deviation: ±0.5%; input of 5 V or 10 mA or higher at the temperature of 25°C
	S5—COM	Digital input 1	1. Internal impedance: 6.6kΩ
	S6—COM	Digital input 2	2. Allowed voltage input of 12–30V
	S7—COM	Digital input 3	3. Bidirectional input terminal
Digital	S8—COM	Digital input 4	4. Max. input frequency: 1kHz
input/output	Y2—CME	Digital output	 Switch capacity: 50mA/30V Output frequency range: 0–1kHz The terminals CME and COM are short connected through J3 before delivery.
	RO3A	NO contact of relay 3	
Bolov	RO3B	NC contact of relay 3	1. Contact capacity: 3A/AC250V,
Relay output	RO3C	Common contact of relay 3	1A/DC30V 2. Do not use them as high-frequency digital outputs.
	RO4A	NO contact of relay 4	aigital outputs.

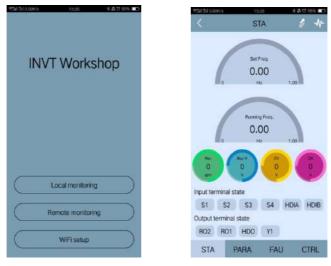
Category	Symbol	Terminal	Description
	RO4C	Common contact of	
	1040	relay 4	

A.5 Communication cards

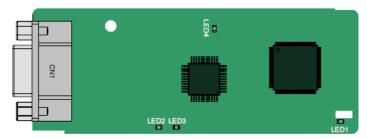
A.5.1 Bluetooth communication card (EC-TX501) and WIFI communication card (EC-TX502)


Definition of indicators and function keys:

Indicator	Definition	Function	
LED1/LED3	Bluetooth/WIFI status indicator	This indicator is on when the expansion card is establishing a connection with the control board; it blinks periodically after the expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the expansion card is disconnected from the control board.	
LED2	Bluetooth communication status indicator	This indicator is on when the communication card is online and data exchange can be performed. It is off when the Bluetooth communication card is not in the online state.	
LED5	Power indicator	It is off when Bluetooth communication is not in the online state.	
SW1	WIFI factory reset button	It is restored to default values and returned to the local monitoring mode.	
SW2	WIFI hardware reset button	It is used to reboot the expansion card.	


The wireless communication card is especially useful for scenarios where you cannot directly use the keypad to operate the VFD due to the restriction of the installation space. With a mobile phone APP, you can operate the VFD in a maximum distance of 30 m. You can choose a PCB antenna or an external sucker antenna. If the VFD is located in an open space and is a molded case machine, you can use a built-in PCB antenna; and if it is a sheetmetal machine and located in a metal cabinet, you need to use an external sucker antenna.

When installing a sucker antenna, install a wireless communication card on the VFD first, and then


lead the SMA connector of the sucker antenna into the VFD and screw it to CN2, as shown in the following figure. Place the antenna base on the chassis and expose the upper part. Try to keep it unblocked.

The wireless communication card must be used with the INVT VFD APP. Scan the QR code of the VFD nameplate to download it. For details, refer to the wireless communication card manual provided with the expansion card. The main interface is shown as follows.

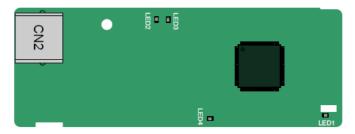
A.5.2 PROFIBUS-DP communication card (EC-TX503)

CN1 is a 9-pin D-type connector, as shown in the following figure.

Con	nector pin	Description
1	-	Unused
2	-	Unused
3	B-Line	Data+ (twisted pair 1)
4	RTS	Request sending
5	GND_BUS	Isolation ground
6	+5V BUS	Isolated power supply of 5 V DC
7	-	Unused
8	A-Line	Data- (twisted pair 2)
9	-	Unused
Housing	SHLD	PROFIBUS cable shielded cable

+5V and GND_BUS are bus terminators. Some devices, such as the optical transceiver (RS485), may need to obtain power through these pins.

Some devices use RTS to determine the sending and receiving directions. In normal applications, only A-Line, B-Line, and the shield layer need to be used.

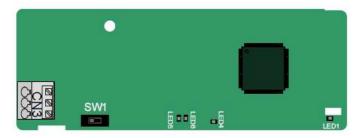

Indicator definition:

Indicator	Definition	Function
		This indicator is on when the expansion card is
		establishing a connection with the control board;
LED1		it blinks periodically after the expansion card is
		properly connected to the control board (the period
		is 1s, on for 0.5s, and off for the other 0.5s);

Indicator	Definition	Function
		and it is off when the expansion card is
		disconnected from the control board.
		This indicator is on when the communication card
LED2	Online indicator	is online and data exchange can be performed.
LEDZ	Online indicator	It is off when the communication card is not in the
		online state.
		This indicator is on when the communication card
		is offline and data exchange cannot be performed.
		It blinks when the communication card is not in the
		offline state.
		It blinks at the frequency of 1 Hz when a
		configuration error occurs: The length of the user
	Offline/Fault indicator	parameter data set during the initialization of the
		communication card is different from that during the
		network configuration.
LED3		It blinks at the frequency of 2 Hz when user
		parameter data is incorrect: The length or content
		of the user parameter data set during the
		initialization of the communication card is different
		from that during the network configuration.
		It blinks at the frequency of 4 Hz when an error
		occurs in the ASIC initialization of PROFIBUS
		communication.
		It is off when the diagnosis function is disabled.
		This indicator is on after the control board feeds
LED4	Power indicator	power to the communication card.

For details, see the VFD communication card manual.

A.5.3 Ethernet communication card (EC-TX504)



The EC-TX504 communication card adopts standard RJ45 terminals.

Indicator definition:

Indicator	Definition	Function
LED1	Status indicator	This indicator is on when the expansion card is establishing a connection with the control board; it blinks periodically after the expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the expansion card is disconnected from the control board.
LED2	Network connection status indicator	This indicator is on when the physical connection to the upper computer is normal; it is off when the upper computer is disconnected.
LED3	Network communication status indicator	This indicator is on when there is data exchange with the upper computer; it blinks when there is no data exchange with the upper computer.
LED4	Power indicator	This indicator is on after the control board feeds power to the communication card.

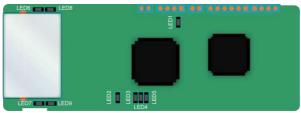
A.5.4 CANopen communication card (EC-TX511) and CAN master/slave control communication card (EC-TX511)

The EC-TX505/511 communication card is user-friendly, adopting spring terminals.

3-Pin spring terminal	Pin	Function	Description
1 2 3	1	CANH	CANopen bus high level signal
A PARTIES	2	CANG	CANopen bus shielding
<u>&&&</u>	3	CANL	CANopen bus low level signal

Terminal resistor switch function description:

Terminal resistor switch	Position value	Function	Description
	Left	OFF	CAN_H and CAN_L are not connected to a terminal resistor.
	Right	ON	CAN_H and CAN_L are connected to a terminal resistor of 120 Ω .


Indicator definition:

.

Indicator	Definition	Function	
		This indicator is on when the expansion card is	
		establishing a connection with the control board;	
		it blinks periodically after the expansion card is properly	
LED1	Status indicator	connected to the control board (the period is 1s, on for	
		0.5s, and off for the other 0.5s);	
		and it is off when the expansion card is disconnected	
		from the control board.	
LED4	Power indicator	This indicator is on after the control board feeds power	
LED4	Fower Indicator	to the communication card.	
	Run indicator	This indicator is on when the communication card is in	
		the working state.	
		It is off when a fault occurs. Check whether the reset pin	
		of the communication card and the power supply are	
LED5		properly connected.	
		It blinks when the communication card is in the	
		pre-operation state.	
		It blinks once when the communication card is in the	
		stopped state.	
		This indicator is on when the CAN controller bus is off or	
		a fault occurs on the VFD.	
		It is off when the communication card is in the working	
LED6	Error indicator	state.	
		It blinks when the address setting is incorrect.	
		It blinks once when a received frame is missed or an	
		error occurs during frame receiving.	

For details about the operation, see the Goodrive350 Series VFD Communication Extension Card Operation Manual.

A.5.5 PROFINET communication card (EC-TX509)

The terminal CN2 adopts standard RJ45 interfaces, which are in the dual design, and the two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted. They are arranged as follows:

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

Indicator definition:

The PROFINET communication card has 9 indicators, of which LED1 is the power indicator, LED2–5 are the communication state indicators of the communication card, and LED6–9 are the state indicators of the network port.

LED	Color	Status	Description
LED1	Green		3.3V power indicator
		On	No network connection
LED2 (Bus status indicator)	Red	Blinking	The connection to the network cable between the PROFINET controller is OK, but the communication is not established.
		Off	Communication with the PROFINET controller has been established.
LED3	0	On	PROFINET diagnosis exists.
(System fault indicator)	Green	Off	No PROFINET diagnosis.
		On	TPS-1 protocol stack has started.
LED4	Green	Blinking	TPS-1 waits for MCU initialization.
(Slave ready indicator)		Off	TPS-1 protocol stack does not start.
LED5	Green		Manufacturer-specific, depending on the

Goodrive350-19 series VFD for crane

LED	Color	Status	Description
(Maintenance status			characteristics of the device
indicator)			
		On	PROFINET communication card and PC/PLC
LED6/7	0	On	have been connected with a network cable.
(Network port status	Green		PROFINET communication card and PC/PLC
indicator)		Off	have not been connected yet.
LED8/9		0	PROFINET communication card and PC/PLC
(Network port	0	On	are communicating.
communication	Green	0"	PROFINET communication card and PC/PLC
indicator)		Off	are not yet communicating.

Electrical connection:

The PROFINET communication card adopts standard RJ45 interfaces, which can be used in a linear network topology and a star network topology. The linear network topology electrical connection diagram is shown in the following.

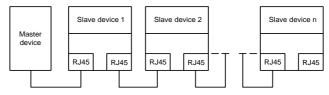
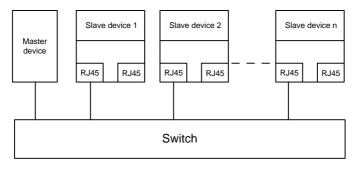



Figure A-5 Linear network topology electrical connection diagram

Note: For the star network topology, you need to prepare PROFINET switches.

The star network topology electrical connection diagram is shown as follows.

A.5.6 CAN-NET two-in-one communication card (EC-TX511B)

EC-TX511B uses spring-type terminals, which are easy to use.

CN2 uses standard RJ45 terminals.

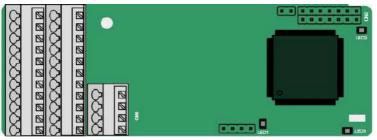
CN3 terminal definition:

3-Pin spring terminal	Pin	Function	Description
1 2 3	1	CANH	CANopen bus high level signal
A PARA	2	CANG	CANopen bus shielding
<u> 888</u>	3	CANL	CANopen bus low level signal

Terminal resistor switch function description:

Terminal resistor switch	Position value	Function	Description	
	Left	OFF	CAN_H and CAN_L are not connected to a terminal resistor.	
	Right	ON	CAN_H and CAN_L are connected to a terminal resistor of 120 Ω .	

Indicator definition:


Indicator	Definition	Function		
LED1	Status indicator	This indicator is on when the expansion card is establishing a connection with the control board; it blinks periodically after the expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the expansion card is disconnected from the control board.		
LED2	Network connection status indicator	This indicator is on when the physical connection to the upper computer is normal; it is off when the upper computer is disconnected.		

Indicator	Definition	Function		
	Network	This indicator is on when there is data exchange with the upper		
LED3	communication	computer; it blinks when there is no data exchange with the		
	status indicator	upper computer.		
LED4	Power indicator	This indicator is on after the control board feeds power to the		
LLD4	i ower indicator	card.		
	Run indicator	This indicator is on when the card is in running state.		
		It is off when the card suffers a fault. Please check the		
LED5		connection by resetting the pins and power supply.		
		It blinks at a specific interval when the card is in pre-run state.		
		It blinks once when the card is in the stopped state.		
		This indicator is on when the CAN controller bus is off or a fault		
	Error indicator	occurs on the VFD.		
LED6		It is off when the card is in the working state.		
LEDO		It blinks at a specific interval when the address is incorrect.		
		It blinks once when a received frame is missed or an error occurs		
		during frame receiving.		

For details, see the Goodrive350-19 Series VFD Communication Expansion Card Operation Manual.

A.6 PG expansion cards

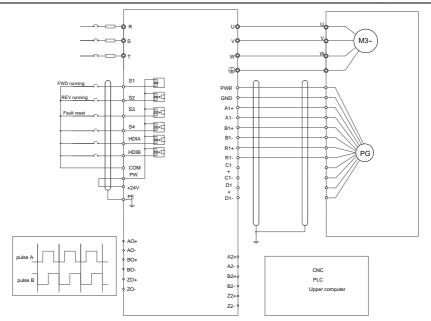
A.6.1 Sin/Cos PG card (EC-PG502)

The terminals are arranged as follows:

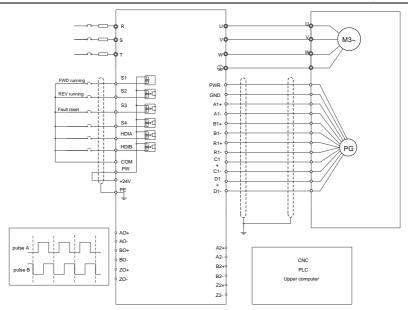
							C1+	C1-	D1+	D1-
PE	AO+	BO+	ZO+	A1+	B1+	R1+	A2+	B2+	Z2+	PWR
GND	AO-	BO-	ZO-	A1-	B1-	R1-	A2-	B2-	Z2-	GND

Indicator definition:

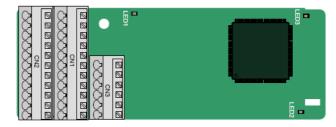
	Indicator Definition		Function			
	LED1	Disconnection	This indicator is off when A1 and B1 of the encoder are disconnected; it			
		indicator	blinks when C1 and D1 of the encoder are disconnected; and it is on			


.

Indicator	Definition	Function		
		when the encoder signals are normal.		
LED2	Power indicator	This indicator is on after the control board feeds power to the PG card.		
	Status indicator	This indicator is on when the card is establishing a connection with the		
		control board; it blinks periodically after the expansion card is properly		
LED3		connected to the control board (the period is 1s, on for 0.5s, and off for		
		the other 0.5s);and it is off when the expansion card is disconnected		
		from the control board.		


EC-PG502 terminal function description:

Signal	Port	Description				
PE	Grounding terminal	Connected to the ground to enhance anti-interference performance.				
PWR	Frankar namer	Voltage: 5V ± 5%				
GND	Encoder power	Max. output current: 150mA				
A1+						
A1-						
B1+						
B1-		 Supporting sine/cosine encoders (with CD signal or without CD signal) 				
R1+	Encoder interface	signal)				
R1-	Encoder interface					
C1+						
C1-		frequency response up to 1kHz				
D1+						
D1-						
A2+						
A2-						
B2+	Dules setting	1. Supporting 5V differential signal				
B2-	Pulse setting	2. Response frequency: 200 kHz				
Z2+						
Z2-						
AO+						
AO-	Frequency-divided output					
BO+		1. Differential output, compatible with 5V differential output				
BO-		 Supporting frequency division of 2^N, which can be set through D20.40 or D21.40; May, substituting support 200 kl la 				
ZO+		P20.16 or P24.16; Max. output frequency: 200 kHz				
ZO-						


The following figure shows the external wiring of the PG card when it is used in combination with an encoder without CD signals.

The following figure shows the external wiring of the PG card when it is used in combination with an encoder with CD signals.

A.6.2 UVW incremental PG card (EC-PG503-05)

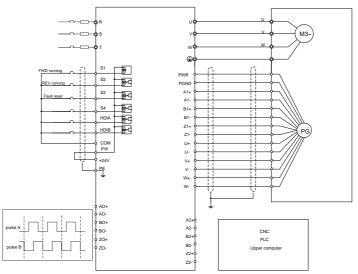
The terminals are arranged as follows:

					A2+	A2-	B2+	B2-	Z2+	Z2-
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	U+	V+	W+	PWR
GND	AO-	BO-	ZO-	A1-	B1-	Z1-	U-	V-	W-	PGND

Indicator definition:

Indicator	Definition	Function
LED1	Disconnection	This indicator is off only when A1 or B1 signal is disconnected
LEDI	indicator	during encoder rotating; and it is on in other cases.
	Otatus in dia atau	This indicator is on when the card is establishing a connection with
LED2	Status indicator	the control board; it blinks periodically after the card is properly

Indicator	Definition	Function
		connected to the control board (the period is 1s, on for 0.5s, and
		off for the other 0.5s); and it is off when the card is disconnected
		from the control board.
LED3	Power indicator	This indicator is on after the control board feeds power to the card.


EC-PG503-05 supports the input of absolute position signals and integrates the advantages of absolute and incremental encoders. It is user-friendly, adopting spring terminals.

Signal	Port	Description					
PE	Grounding	Connected to the ground to enhance anti-interference					
F E	terminal	performance.					
GND	Ground	Ground Ground of the PCB internal power.					
PWR		Voltage: 5 V±5%					
PGND	Encoder power	Max. current: 200 mA					
FOND		(PGND is the isolation power ground.)					
A1+							
A1-							
B1+	Encoder interface	1. Differential incremental PG interface of 5V					
B1-		2. Response frequency: 400kHz					
Z1+							
Z1-							
A2+							
A2-							
B2+	Pulse setting	1. Differential input of 5V					
B2-		2. Response frequency: 200kHz					
Z2+							
Z2-							
AO+							
AO-							
BO+	Frequency-divided	1. Differential output of 5V					
BO-	output	2. Supporting frequency division of 1–255, which can be set					
ZO+		through P20.16 or P24.16					
ZO-							
U+							
U-		1. Absolute position (UVW information) of the hybrid encoder,					
V+	UVW encoder	differential input of 5V					
V-	interface	2. Response frequency: 40kHz					
W+							

EC-PG503-05 terminals are described as follows:

Signal	Port	Description
W-		

The following figure shows the external wiring when EC-PG503-05 is used.

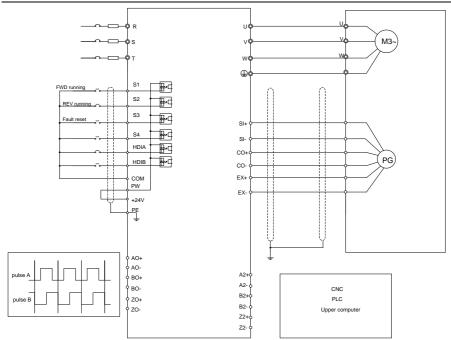
A.6.3 Resolver PG card (EC-PG504-00)

сиз сиз сиз сиз сиз сиз сиз сиз сиз сиз	.
	Ę 🗖

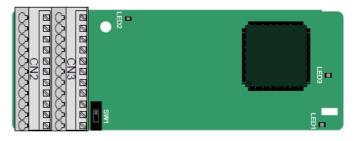
PE	AO+	BO+	ZO+	EX+	SI+	CO+	A2+	B2+	Z2+	PWR
GND	AO-	BO-	ZO-	EX-	SI-	CO-	A2-	B2-	Z2-	GND

Indicator definition:

Indicator	Definition	Function
	LED1 Status indicator	This indicator is on when the card is establishing a connection with
		the control board; it blinks periodically after the card is properly
LEDI		connected to the control board (the period is 1s, on for 0.5s, and
		off for the other 0.5s); and it is off when the card is disconnected


Indicator	Definition	Function
		from the control board.
LED2	Disconnection indicator	This indicator is off when the encoder is disconnected; it is on when the encoder signals are normal; and it blinks when the encoder signals are not stable.
LED3	Power indicator	This indicator is on after the control board feeds power to the card.

EC-PG504-00 can be used in combination with a resolver of excitation voltage 7 Vrms. It is user-friendly, adopting spring cage terminals.


EC-PG504-00 terminal functions:

Signal	Port	Description					
PE	Grounding	Connected to the ground to enhance anti-interference					
PE	terminal	performance.					
PWR		Voltage: EV/ E9/					
GND	Output power	Voltage: 5V±5%					
SI+							
SI-	Encoder signal	Recommended resolver transformation ratio: 0.5					
CO+	input	Recommended resolver transformation ratio. 0.5					
CO-							
EX+	Encoder excitation	1. Factory setting of excitation: 10kHz					
EX-	signal	2. Supporting resolvers with an excitation voltage of 7Vrms					
A2+							
A2-							
B2+	Pulse setting	1. Differential input of 5V					
B2-	Fuise setting	2. Response frequency: 200kHz					
Z2+							
Z2-							
AO+		4 Differential evites t of 5)/					
AO-		 Differential output of 5V Frequency-divided output of resolver simulated A1, B1, and Z1, 					
BO+	Frequency-divided output	equal to an incremental PG card of 1024 PPR, supporting					
BO-		frequency division of 2N, which can be set through P20.16 or					
ZO+		P24.16; Max. output frequency: 200 kHz					
ZO-		T 24.10, Max. odiput frequency. 200 km2					

The following figure shows the external wiring when EC-PG504-00 is used.

A.6.4 Multi-function incremental PG card (EC-PG505-12)

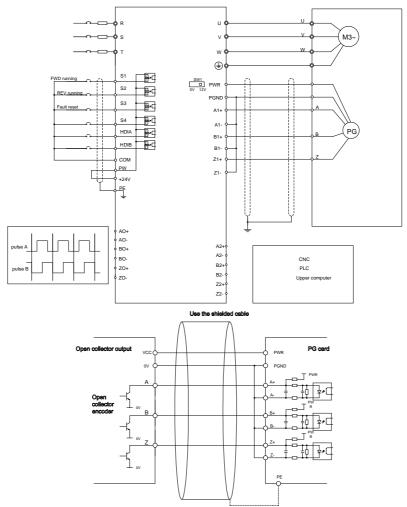
The terminals are arranged as follows:

The dual in-line package (DIP) switch SW1 is used to set the voltage class (5V or 12V) of the power supply of the encoder. The DIP switch can be operated with an auxiliary tool.

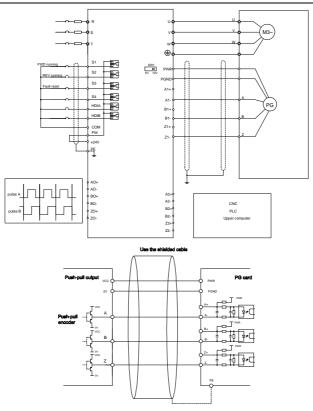
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AO-	BO-	ZO-	A1-	B1-	Z1-	A2-	B2-	Z2-	PGND

Indicator definition:

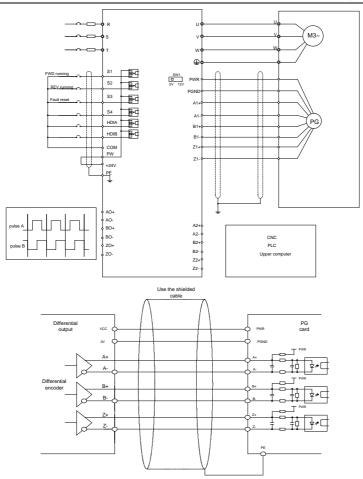
Indicator	Definition	Function
LED1	Status indicator	This indicator is on when the card is establishing a connection with

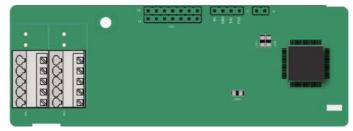

Indicator	Definition	Function	
		the control board; it blinks periodically after the card is properly	
		connected to the control board (the period is 1s, on for 0.5s, and off	
		for the other 0.5s); and it is off when the card is disconnected from	
		the control board.	
LED2	Disconnection	This indicator blinks only when A1 or B1 signal is disconnected	
LED2	indicator	during encoder rotating; and it is on in other cases.	
LED3	Power indicator	This indicator is on after the control board feeds power to the card.	

EC-PG505-12 can be used in combination with multiple types of incremental encoders through different modes of wiring. It is user-friendly, adopting spring terminals.


EC-PG505-12 terminal function description:

Signal	Port	Description
PE	Grounding terminal	Connected to the ground to enhance anti-interference performance.
GND	Ground	Ground of the PCB internal power.
PWR		Voltage: 5V/12V ± 5%
		Max. output: 150 mA
PGND	Encoder power	Select the voltage class through SW1 based on the voltage class of
FGND		the used encoder.
		(PGND is the isolation power ground.)
A1+		
A1-		1. Applicable to 5V/12V push-pull encoders
B1+	Encoder interface	2. Applicable to 5V/12V OC encoders
B1-	Encoder interface	3. Applicable to 5V differential encoders
Z1+		4. Response frequency: 200 kHz
Z1-		
A2+		
A2-		
B2+	Dulas autina	1. Supportings the same signal types as the encoder signal types
B2-	Pulse setting	2. Response frequency: 200 kHz
Z2+		
Z2-		
AO+		
AO-		
BO+	Frequency-divided	1. Differential output of 5V
BO-	output	2. Supporting frequency division of 1–255, which can be set through
ZO+		P20.16 or P24.16
ZO-		


The following figure shows the external wiring of the expansion card used in combination with an open collector encoder. A pull-up resistor is configured inside the PG card.


The following figure shows the external wiring when the expansion card is used in combination with a push-pull encoder.

The following figure shows the external wiring when the expansion card is used in combination with a differential encoder.

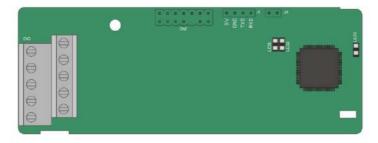
A.6.5 Simplified incremental PG card (EC-PG507-12)

The terminals are arranged as follows:

The dual in-line package (DIP) switch SW1 is used to set the voltage class (5V or 12V) of the power supply of the encoder. The DIP switch can be operated with an auxiliary tool.

PE	A1+	B1+	Z1+	PWR
PGND	A1-	B1-	Z1-	PGND

Indicator definition:


Indicator	Definition	Function	
LED1	Status indicator	This indicator is on when the card is establishing a connection with the control board; it blinks periodically after the card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the card is disconnected from the control board.	
LED2		This indicator is off when A1 and B1 of the encoder are disconnected; it is on when the encoder pulses are normal.	
LED3		This indicator is on after the control board feeds power to the card.	

EC-PG507-12 can work in combination with multiple types of incremental encoders through various external wiring modes, which are similar to the wiring modes of EC-PG505-12.

Signal	Port	Description
PE	Grounding terminal	Connected to the ground to enhance anti-interference
		performance.
PWR		Voltage: 5V/12V ± 5%
		Max. output: 150 mA
PGND	Encoder power	Select the voltage class through SW1 based on the voltage
PGND		class of the used encoder.
		(PGND is the isolation power ground.)
A1+		
A1-		1. Supporting push-pull interfaces of 5V/12V
B1+		2. Supporting open collector interfaces of 5V/12V
B1-	Encoder interface	3. Supporting differential interfaces of 5V
Z1+		4. Response frequency: 400kHz
		5. Support the encoder cable length of up to 50m
Z1-		

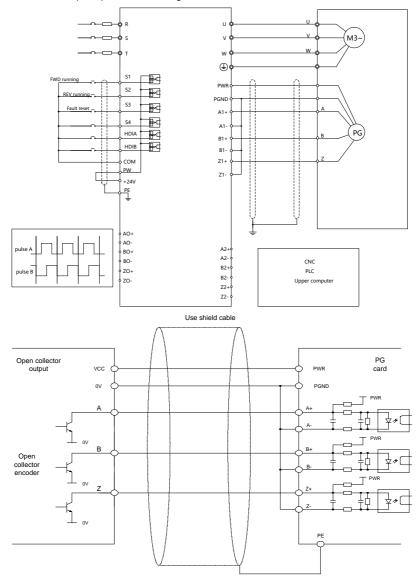
EC-PG507-12 terminals are described as follows:

A.6.6 24V simplified incremental PG card (EC-PG507-24)

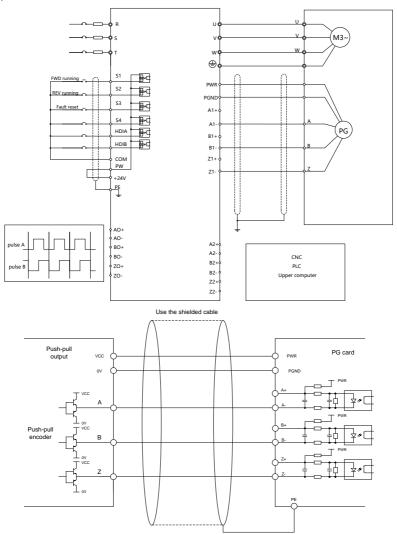
The terminals are arranged as follows:

PE	A1+	B1+	Z1+	PWR
PGND	A1-	B1-	Z1-	PGND

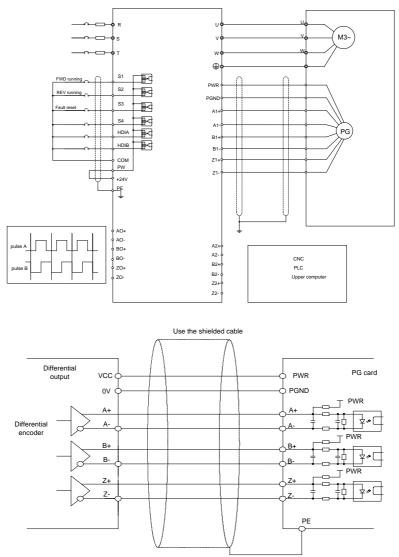
Indicator definition:


Indicator	Definition	Function
LED1	Status indicator	This indicator is on when the card is establishing a connection with the control board; it blinks periodically after the card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the card is disconnected from the control board.
LED2	Disconnection indicator	This indicator is off when A1 and B1 of the encoder are disconnected; it is on when the encoder pulses are normal.
LED3	Power indicator	This indicator is on after the control board feeds power to the card.

EC-PG507-24 can work in combination with multiple types of incremental encoders through various external wiring modes. It uses terminals with the spacing of 5.08mm, easy to use.


EC-PG507-24 terminals are described as follows:

Signal	Port Description	
PE	Grounding terminal	Connected to the ground to enhance anti-interference performance.
PWR		Voltage: 24V ± 5%
DOND	Encoder power	Max. current: 150 mA
PGND		(PGND is the isolation power ground.)
A1+	Encoder interface	4. Currenting much multimerforce of 241/
A1-		1. Supporting push-pull interfaces of 24V
B1+		2. Supporting open collector interfaces of 24V
B1-		3. Supporting differential interfaces of 24V
Z1+		4. Response frequency: 200 kHz
Z1-		5. Support the encoder cable length of up to 100m


The following figure shows the external wiring of the card when it is used in combination with an open collector encoder. A pull-up resistor is configured in the PG card.

The following figure shows the external wiring when the expansion card is used in combination with a push-pull encoder.

The following figure shows the external wiring when the expansion card is used in combination with a differential encoder.

Appendix B Technical data

B.1 What this chapter contains

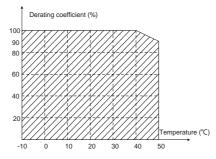
This chapter describes the technical data of the VFD and its compliance to CE and other quality certification systems.

B.2 Derated application

B.2.1 Capacity

Choose a VFD model based on the rated current and power of the motor. To endure the rated power of the motor, the rated output current of the VFD must be larger or equal to the rated current of the motor. The rated power of the VFD must be higher or equal to that of the motor.

Note:


- The maximum allowable shaft power of the motor is limited to 1.5 times the rated power of the motor. If the limit is exceeded, the VFD automatically restricts the torque and current of the motor. This function effectively protects the input shaft against overload.
- The rated capacity is the capacity at the ambient temperature of 40°C.
- You need to check and ensure that the power flowing through the common DC connection in the common DC system does not exceed the rated power of the motor.

B.2.2 Derating

If the ambient temperature on the site where the VFD is installed exceeds 40°C, the altitude exceeds 1000m, or the switching frequency is changed from 4kHz to 8, 12, or 15kHz, the VFD needs to be derated.

B.2.2.1 Derating due to temperature

When the temperature ranges from +40°C to +50°C, the rated output current is derated by 1% for each increased 1°C. For the actual derating, see the following figure.

Note: It is not recommended to use the VFD at an environment with the temperature higher than 50° C. If you do, you shall be held accountable for the consequences caused.

B.2.2.2 Derating due to altitude

When the altitude of the site where the VFD is installed is lower than 1000m, the VFD can run at the rated power. When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, consult the local INVT dealer or local INVT office for details.

B.2.2.3 Derating due to carrier frequency

The power of Goodrive350-19 series VFDs varies according to carrier frequencies. The VFD rated power is defined based on the carrier frequency set in factory. If the carrier frequency exceeds the factory setting, the power of the VFD is derated by 10% for each increased 1 kHz.

B.3 Grid specifications

Crid voltage	AC 3PH 380V(-15%)–440V(+10%)
Grid voltage	AC 3PH 520V(-15%)–690V(+10%)
	According to the definition in IEC 60439-1, the maximum allowable short-circuit
Short-circuit	current at the incoming end is 100kA. Therefore, the VFD is applicable to
capacity	scenarios where the transmitted current in the circuit is no larger than 100 kA
	when the VFD runs at the maximum rated voltage.
Frequency	50/60 Hz±5%, with a maximum change rate of 20%/s

B.4 Motor connection data

Motor type	Asynchronous induction motor or permanent-magnet synchronous motor		
Voltage	0–U1 (motor rated voltage), 3PH symmetrical, Umax (VFD rated voltage) at the field-weakening point		
Short-circuit protection	The motor output short-circuit protection meets the requirements of IEC 61800-5-1.		
Frequency	0–400 Hz		
Frequency resolution	0.01 Hz		
Current	See section 3.6 Product ratings.		
Power limit	1.5 times of the rated power of the motor		
Field-weakening point	10400 Hz		
Carrier frequency	4, 8, 12, or 15 kHz		

B.5 Application standards

The following table describes the standards that VFDs comply with.

EN/ISO 13849-1	Safety of machinery—Safety-related parts of control systems—Part 1:
EN/150 13849-1	General principles for design
IEC/EN 60204-1	Safety of machinery. Electrical equipment of machines. Part 1: General
1EC/EN 00204-1	requirements

IEC/EN 62061	Safety of machinery—Safety-related functional safety of electrical, electronic, and programmable electronic control systems
IEC/EN 61800-3	Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods
IEC/EN 61800-5-1	Adjustable speed electrical power drive systems—Part 5-1: Safety requirements—Electrical, thermal and energy
IEC/EN 61800-5-2	Adjustable speed electrical power drive systems—Part 5-2: Safety requirements—Function
GB/T 30844.1-2014 General-purpose variable-frequency adjustable-speed equipment kV and lower—Part 1: Technical conditions	
GB/T 30844.2-2014	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower—Part 2: Test methods
GB/T 30844.3-2017	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower—Part 3: Safety regulations

B.5.1 CE marking

The CE marking on the name plate of a VFD indicates that the VFD is CE-compliant, meeting the regulations of the European low-voltage directive (2014/35/EU) and EMC directive (2014/30/EU).

B.5.2 EMC compliance declaration

European union (EU) stipulates that the electric and electrical devices sold in Europe cannot generate electromagnetic disturbance that exceeds the limits stipulated in related standards, and can work properly in environments with certain electromagnetic interference. The EMC product standard (EN 61800-3) describes the EMC standards and specific test methods for adjustable speed electrical power drive systems. Our products have been compliant with these EMC regulations.

B.6 EMC regulations

The EMC product standard (EN 61800-3) describes the EMC requirements on VFDs.

Application environment categories:

First environment: Civilian environments, including application scenarios where VFDs are directly connected to the civil power supply low-voltage grids without intermediate transformers.

Second environment: All environments except those in Category I.

VFD categories:

C1: Rated voltage lower than 1000 V, applied to environments of Category I.

C2: Rated voltage lower than 1000 V, non-plug, socket, or mobile devices; power drive systems that must be installed and operated by specialized personnel when applied to environments of Category I

Note: The EMC standard IEC/EN 61800-3 no longer restricts the power distribution of VFDs, but it specifies their use, installation, and commissioning. Specialized personnel or organizations must have the necessary skills (including the EMC-related knowledge) for

installing and/or performing commissioning on the electrical drive systems.

C3: Rated voltage lower than 1000 V, applied to environments of Category II. They cannot be applied to environments of Category I.

C4: Rated voltage higher than 1000 V, or rated current higher or equal to 400 A, applied to complex systems in environments of Category II.

B.6.1 VFD category of C2

The induction disturbance limit meets the following stipulations:

1. Select an optional EMC filter according to Appendix D Optional peripheral accessories and install it following the description in the EMC filter manual.

2. Select the motor and control cables according to the description in the manual.

3. Install the VFD according to the description in the manual.

Currently in environments in China, the VFD may generate radio interference, you need to take measures to reduce the interference.

B.6.2 VFD category of C3

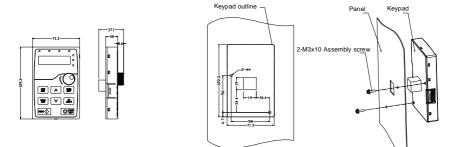
∻

The anti-interference performance of the VFD meets the requirements of the second environment in the IEC/EN 61800-3 standard.

The induction disturbance limit meets the following stipulations:

- 1. Select an optional EMC filter according to Appendix D Optional peripheral accessories and install it following the description in the EMC filter manual.
- 2. Select the motor and control cables according to the description in the manual.
- 3. Install the VFD according to the description in the manual.

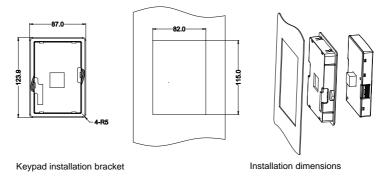
VFDs of C3 category cannot be applied to civilian low-voltage common grids. When applied to such grids, the VFDs may generate radio frequency electromagnetic interference.

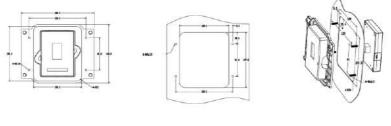

Appendix C Dimension drawings

C.1 What this chapter contains

This chapter describes the dimension drawings of VFD, which use millimeter (mm) as the unit.

C.2 LED keypad


C.2.1 Structure diagram


Opening sizes for installing the keypad without a braket

C.2.2 Keypad mounting bracket

Note: You can directly use M3 threaded screws or an installation bracket to externally connect the keypad to the VFD. The installation bracket is optional for 380V 1.5–30 kW VFD models and 500V 4–18.5 kW VFD models. The installation bracket is a standard part for 380V 37–500 kW VFD models, 500V 22–500 kW VFD models, and all 660V VFD models.

Keypad installation bracket

Installation dimensions

Figure C-2(Standard) Installation bracket for 380V 37–315kW and 660V 22–630kW models

C.3 LCD keypad

C.3.1 Structure diagram

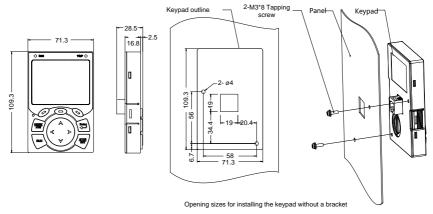


Figure C-3 Keypad structure

C.3.2 Keypad mounting bracket

Note:

- You can directly use M3 threaded screws or an installation bracket to externally connect the keypad to the VFD.
- For VFDs of 380 V, 1.5 to 75 kW, the keypad mounting bracket is an optional part. For those of 380 V, 90 to 500 kW and 660 V, 22 to 630 kW, you can use optional brackets or use the standard keypad brackets externally.

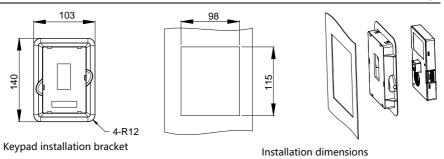
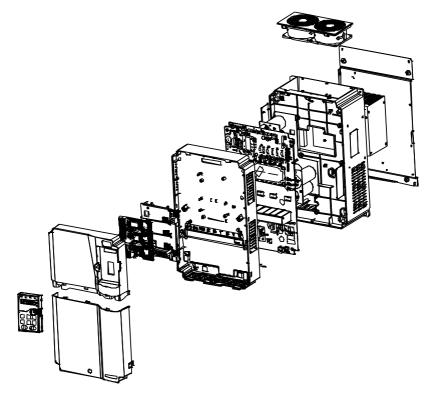
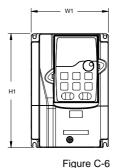
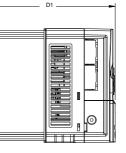
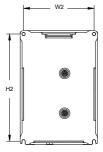


Figure C-4 (Optional) Installation bracket for 380V 1.5–500kW and 660V 22–630kW models

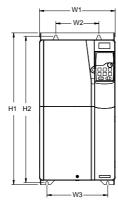
C.4 VFD structure


Figure C-5 VFD structure

C.5 Dimensions of AC 3PH 380V (-15%)-440V (+10%)

C.5.1 Wall mounting dimensions



380V 1.5–37kW VFD wall mounting diagram

VFD model	Outli	ne Dimeı (mm)	nsions		listance nm)	Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
1.5kW-2.2kW	126	186	185	115	175	5	M4	2	3
4kW-5.5kW	126	186	201	115	175	5	M4	2.5	3.5
7.5kW	146	256	192	131	243.5	6	M5	3	4
11kW–15kW	170	320	220	151	303.5	6	M5	6	7
18.5kW–22kW	200	340.6	208	185	328.6	6	M5	8.5	10.5
30kW-37kW	250	400	223	230	380	6	M5	16	17

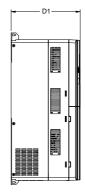
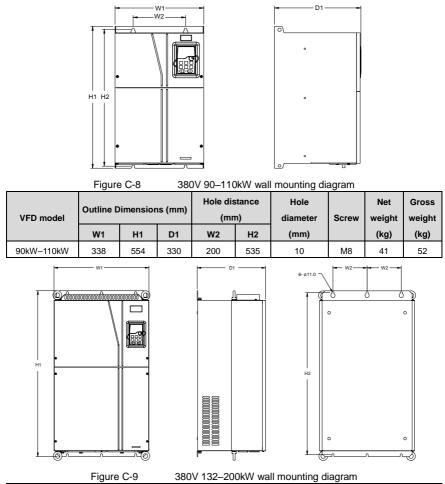
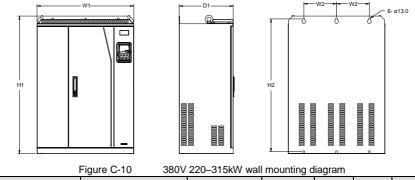
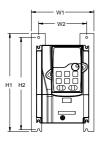
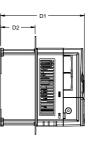
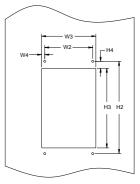




Figure C-7 380V 45-75kW wall mounting diagram **Outline Dimensions** Gross Hole Net Hole distance (mm) VFD model (mm) diameter Screw weight weight W1 H1 D1 W2 W3 H2 (mm) (kg) (kg) 45kW-75kW 282 560 258 160 226 542 9 M8 25 29

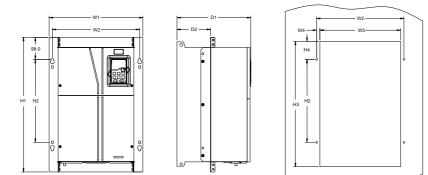



VFD model	Outline Di	mensio	ons (mm)	Hole di (m		Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
132kW-200kW	500	870	360	180	850	11	M10	85	110

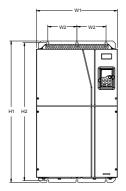


	Outline	e Dimensi	ons	Hole di	stance	Hole		Net	Gross
VFD model		(mm)		(mi	m)	diameter	Screw	weight	weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
220kW-315kW	680	960	380	230	926	13	M12	135	165

C.5.2 Flange installation dimensions



		~ 4	4
- FIO	ure	C-1	


380V 1.5–75kW flange installation diagram

VFD model	Dime	utline ensio mm)		di	Mount dimensions I (mm)			Hole distance (mm)			Hole distance (mm) diameter Screw weig				Net weight	Gross weight
	W1	H1	D1	W2	H2	D2	W3	H3	W4	H4	(mm)		(kg)	(kg)		
1.5kW-2.2kW	150.2	234	185	115	220	65.5	130	190	7.5	13.5	5	M4	2	3		
4kW–5.5kW	150.2	234	201	115	220	83	130	190	7.5	13.5	5	M4	2.5	3.5		
7.5kW	170.2	292	192	131	276	84.5	150	260	9.5	6	6	M5	3	4		
11kW–15kW	191.2	370	220	151	351	113	174	324	11.5	12	6	M5	6	7		
18.5kW–22kW	266	371	208	250	250	104	224	350.6	13	20.3	6	M5	8.5	10.5		
30kW-37kW	316	430	223	300	300	118.3	274	410	13	55	6	M5	16	17		
45kW–75kW	352	580	258	332	400	133.8	306	570	12	80	9	M8	25	29		

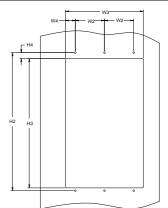
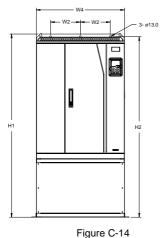
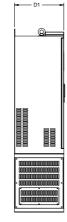
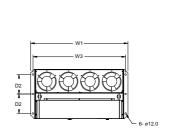


Figure C-1	2 380V 90-	–110kW flange ir	nstallation d	iagram

VFD model	Dime	utline ensio mm)	ns		/loun sion:	ıt s (mm)		ole dist (mm)		Hole diameter	Screw	Net weight (kg)	Gross weight
	W1	H1	D1	W2	H2	D2	H3	W4	H4	(mm)		(kg)	(kg)
90kW-110kW	418.5	600	330	389.5	370	149.5	559	14.2	108.5	10	M8	41	52

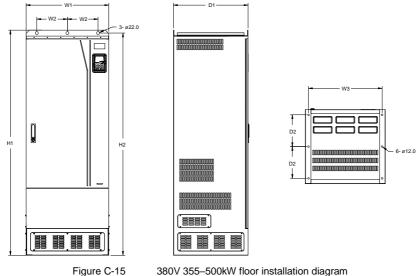


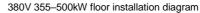



Figure C-13	380V 132–200kW flange installation diagram
-------------	--

VFD model		Dutline nensic (mm)	ons		Mour	nt s (mm)	Hole	dista	nce (mm)		Screw	Ŭ	Gross weight
	W1	H1	D1	W2	H2	D2	W3 H3 W4 H4			(mm)		(kg)	(kg)	
132kW-200kW	500	870	360	180	850	178.5	480	796	60	37	11	M10	85	110

C.5.3 Floor installation dimensions





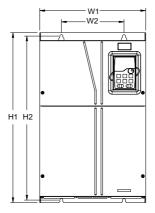
4 380V 220	–315kW floor	installation	diagram
------------	--------------	--------------	---------

	Outli	ine Dir	nens	ions	Мо	unt di	mensio	ons	Hole		Net	Gross
VFD model		(mn	n)			(m	m)		diameter	Screw	weight	weight
	W1	H1	D1	W4	W2	W3	H2	D2	(mm)		(kg)	(kg)
220kW–315kW	750	1410	380	680	230	714	1390	150	13/12	M12/M10	135	165

Dimension drawings

W2

0


0

0

VFD model	O Dimens	utline sions (mm)	Mo		mensio Im)	ons	Hole diameter	Screw	Net weight (kg)	Gross weight
	W1	H1	D1	W2	W3	H2	D2	(mm)		(K <u>g</u>)	(kg)
355kW–500kW	620	1700	560	230	572	1678	240	22/12	M20/M10	350	407

C.6 Dimensions of AC 3PH 520V (-15%)-690V (+10%)

C.6.1 Wall mounting dimensions

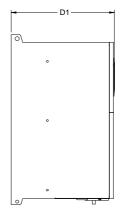
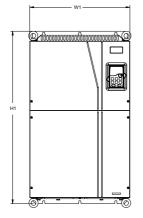



Figure C-16 660V 22–132kW wall mounting diagram

VFD model	Outline Dimensions (mm)				ount ions (mm)	Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2 H2		(mm)		(kg)	(kg)
22kW-45kW	270	555	325	130	540	7	M6	30	32
55kW-132kW	325	680	365	200	661	9.5	M8	47	67

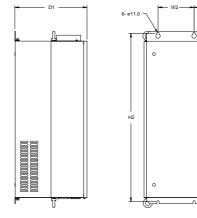
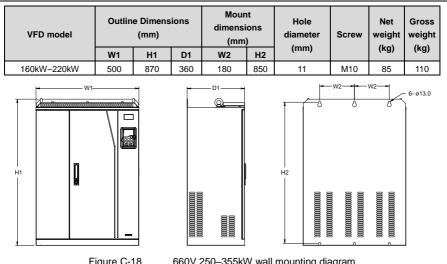
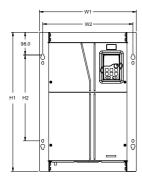



Figure C-17


660V 160-220kW wall mounting diagram

Dimension drawings

	iguic O	10	0001	200 000		mounting all	gram		
	Outlin	ne Dime	nsions	Мо	unt	Hole		Net	Gross
VFD model	(mm)			dimensions (mm)		diameter	Screw	weight	weight
	W1	W1 H1 D1			H2	(mm)		(kg)	(kg)
250kW-355kW	680	960	380	230	926	13	M12	135	165

C.6.2 Flange installation dimensions

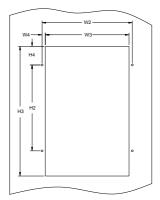
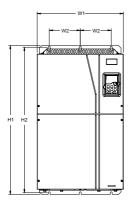



Figure C-19

660V 22–132kW flange installation diagram

VFD model		Dutlin nensi (mm)	ons		Moun nensio (mm)	ons	Hole distance (mm)		diameter	Screw	Net weight	Gross weight		
	W1	H1	D1	W2	H2	D2	W3	W3 H3 W4 H4		(mm)		(kg)	(kg)	
22kW-45kW	270	555	325	130	540	167	261	516	65.5	17	7	M6	30	32
55kW-132kW	325	680	363	200	661	182	317	626	58.5	23	9.5	M8	47	67

Dimension drawings

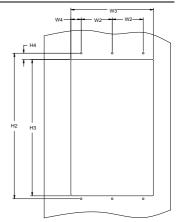



Figure C-20 660V 160–220kW flange installation diagram

VFD model		Dutlin nensi (mm)	ons	diı	Mou mens (mm	ions	Ho	Hole distance (mm) W3 H3 W4 H4		Hole diameter	Screw	Net weight	Gross weight	
	W1	H1	D1	W2	H2	D2	W3			(mm)		(kg)	(kg)	
160kW-220kW	500	870	358	180	850	178.5	480	796	60	37	11	M10	85	110

C.6.3 Floor installation dimensions

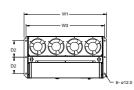


Figure C-21

660V 250-355kW flange installation diagram

Outline Dimensions				Мо	unt di	mensi	ons	Hole		Net	Gross	
VFD model	(mm)				(mm)				diameter	Screw	weight	weight
	W1	H1	D1	W4	W2	W3	H2	D2	(mm)		(kg)	(kg)
250kW-355kW	750	1410	380	680	230	714	1390	150	13/12	M12/M10	135	165

6-ø12.0

W/3

mmm

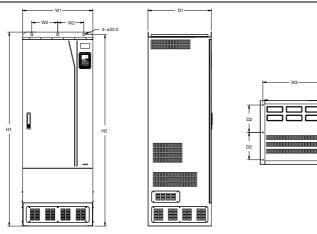
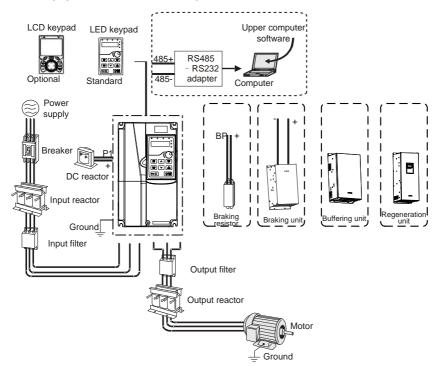


Figure C-22

660V 400-630kW floor installation diagram

VFD model	(Dimer	Outline sions		Mount dimensions (mm)				Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2	W3	H2	D2	(mm)		(kg)	(kg)
400kW-630kW	620	1700	560	230	572	1678	240	22/12	M20/M10	350	407


Appendix D Optional peripheral accessories

D.1 What this chapter contains

This chapter describes how to select optional accessories of the VFD.

D.2 Wiring of peripheral accessories

The following figure shows the external wiring of the VFD.

Note:

- The 380V 110kW and lower VFD models are equipped with built-in braking units.
- The 380V 18.5–110kW VFD models are equipped with built-in DC reactors.
- P1 terminals are equipped only for the 380V 132kW and higher models, which enable the VFDs to be directly connected to external DC reactors.
- P1 terminals are equipped for all 660V models, which enable the VFDs to be directly connected to external DC reactors.
- The braking units are INVT DBU series standard braking units. For details, see the DBU operation manual.

Image	Name	Description
	Cable	Accessory for signal transmission.
	Breaker	Device for electric shock prevention and protection against short-to-ground that may cause current leakage and fire. Select residual-current circuit breakers (RCCBs) that are applicable to VFDs and can restrict high-order harmonics, and of which the rated sensitive current for one VFD is larger than 30 mA.
(E)	Input reactor	Accessories used to improve the power factor on the input side of the VFD, and thus restrict high-order harmonic
	DC reactor	currents. Reactors have been built in the 380V 18.5–110kW VFD models as standard configuration. The 380V 132kW and higher VFD models and 660V
	Input filter	models can be directly connected to external DC reactors. Accessory that restricts the electromagnetic interference generated by the VFD and transmitted to the public grid through the power cable. Try to install the input filter near the input terminal side of the VFD.
or or	Braking unit or braking resistor	Accessories used to consume the regenerative energy of the motor to reduce the DEC time. VFDs of 380V, 37kW or lower need only to be configured with braking resistors, those of 380V, 132kW or higher and 660V series also need to be configured with braking units, and those of 380V, 45kW to 110kW can be configured with optional built-in braking units.
C 000	Output filter	Accessory used to restrict interference generated in the wiring area on the output side of the VFD. Try to install the output filter near the output terminal side of the VFD.
[到	Output reactor	Accessory used to lengthen the valid transmission distance of the inverter, which effectively restrict the transient high voltage generated during the switch-on and switch-off of the IGBT module of the inverter.

D.3 LCD keypad

You can configure the LCD keypad and LCD keypad installation bracket (which are optional parts) for the VFD.

Name	Description	Order No.
LCD keypad	KEY-LCD01-ZY-350-19	11022-00152
Bracket	GD350 compatible keypad bracket	19005–00149
3m keypad cable	Keypad cable; L=3M(CHV-SE)	37005–00022

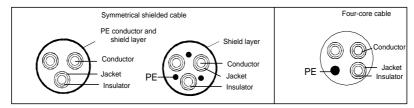
D.4 Power supply

See chapter 4 Installation guidelines.

```
A
```

Ensure that the voltage class of the VFD is consistent with that of the grid.

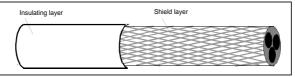
D.5 Cable


D.5.1 Powe cable

The sizes of the input power cables and motor cables must comply with local regulations.

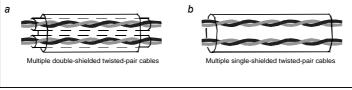
- The input power cables and motor cables must be able to carry the corresponding load currents.
- The maximum temperature margin of the motor cables in continuous operation cannot be lower than 70°C.
- The conductivity of the PE grounding conductor is the same as that of the phase conductor, that is, the cross-sectional areas are the same. For VFD models of higher than 30kW, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- ✤ For details about the EMC requirements, see Appendix B Technical data.

To meet the EMC requirements stipulated in the CE standards, you must use symmetrical shielded cables as motor cables (as shown in the following figure).


Four-core cables can be used as input cables, but symmetrical shielded cables are recommended. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

Note: If the conductivity of the shield layer of the motor cables cannot meet the requirements, separate PE conductors must be used.

To protect the conductors, the cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type. This reduces grounding resistance, and thus improves impedance continuity.


To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must at least be 1/10 of the conductivity of the phase conductor. This requirement can be well met by a copper or aluminum shield layer. The following figure shows the minimum requirement on motor cables of a VFD. The cable must consist of a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.

Cross-section of the cable

D.5.2 Control cables

All analog control cables and cables used for frequency input must be shielded cables. Analog signal cables need to be double-shielded twisted-pair cables (as shown in figure a). Use one separate shielded twisted pair for each signal. Do not use the same ground wire for different analog signals.

Power cable arrangement

For low-voltage digital signals, double-shielded cables are recommended, but shielded or unshielded twisted pairs (as shown in figure b) also can be used. For frequency signals, however, only shielded cables can be used.

Relay cables need to be those with metal braided shield layers.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

Note: Analog signals and digital signals cannot use the same cables, and their cables must be arranged separately.

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megameter to measure the insulation resistance, on the VFD or its components. Insulation and voltage endurance tests have been performed between the main circuit and chassis of each VFD before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the VFDs.

Note: Check the insulation conditions of the input power cable of a VFD according to the local

regulations before connecting it.

D.5.3 Recommended cable size

		nended	3PH 380	v (=1070)	+++++++++++++++++++++++++++++++++++++++	/0)		
		ze (mm²)	Conr	nectable ca	ble size (n	nm²)	Terminal	Fastening
VFD model	RST	5	RST	P1	PB	DE	screw	torque
	UVW	PE	uvw	(+)	(+) (-)	PE		(Nm)
GD350-19-1R5G-4-B	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5
GD350-19-2R2G-4-B	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5
GD350-19-004G-4-B	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5
GD350-19-5R5G-4-B	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5
GD350-19-7R5G-4-B	4	4	2.5–6	4–6	4–6	2.5–6	M4	1.2–1.5
GD350-19-011G-4-B	6	6	4–10	4–10	4–10	4–10	M5	2.3
GD350-19-015G-4-B	6	6	4–10	4–10	4–10	4–10	M5	2.3
GD350-19-018G-4-B	10	10	10–16	10–16	10–16	10–16	M5	2.3
GD350-19-022G-4-B	16	16	10–16	10–16	10–16	10–16	M5	2.3
GD350-19-030G-4-B	25	16	25–50	25–50	25–50	16–25	M6	2.5
GD350-19-037G-4-B	25	16	25–50	25–50	25–50	16–25	M6	2.5
GD350-19-045G-4-B	35	16	35–70	35–70	35–70	16–35	M8	10
GD350-19-055G-4-B	50	25	35–70	35–70	35–70	16–35	M8	10
GD350-19-075G-4-B	70	35	35–70	35–70	35–70	16–35	M8	10
GD350-19-090G-4-B	95	50	70–120	70–120	70–120	50–70	M12	35
GD350-19-110G-4-B	120	70	70–120	70–120	70–120	50–70	M12	35
GD350-19-132G-4	185	95	95–300	95–300	95–300	95–240		
GD350-19-160G-4	240	120	95–300	95–300	95–300	120–240		
GD350-19-185G-4	95*2P	95	95–150	70–150	70–150	35–95		
GD350-19-200G-4	95*2P	120	95*2P	95*2P	95*2P	120–240		
			-150*2P	-150*2P	-150*2P			e used for s. You are
GD350-19-220G-4	150*2P	150	95*2P 150*2P	95*2P 	95*2P -150*2P	150–240		nded to use
			95*4P	95*4P	95*4P	95*2P	a wrench	or sleeve.
GD350-19-250G-4	95*4P	95*2P	–150*4P	–150*4P	–150*4P	–150*2P		
GD350-19-280G-4	95*4P	95*2P	95*4P	95*4P	95*4P	95*2P		
GD350-19-315G-4	95*4P	95*4P	-150*4P 95*4P	-150*4P 95*4P	-150*4P 95*4P	-150*2P 95*2P		
60300-19-3156-4	30 4P	30 4P	90 4F	90 4F	90 4P	90 ZP		

Table D-1 AC 3PH 380V (-15%)-440V(+10%)

VED model	Recommended cable size (mm ²)		Con	nectable ca	Terminal			
VFD model	RST UVW	PE	RST UVW	P1 (+)	РВ (+) (-)	PE	screw	torque (Nm)
			-150*4P	-150*4P	–150*4P	–150*2P		
GD350-19-355G-4	95*4P	95*4P	95*4P –150*4P	95*4P -150*4P	95*4P -150*4P	95*2P -150*2P		
GD350-19-400G-4	150*4P	150*2P	95*4P –150*4P	95*4P -150*4P	95*4P -150*4P	95*2P -150*2P		
GD350-19-450G-4	150*4P	150*2P	95*4P -150*4P	95*4P -150*4P	95*4P -150*4P	95*2P -150*2P		
GD350-19-500G-4	150*4P	150*2P	95*4P –150*4P	95*4P –150*4P	95*4P -150*4P	95*2P -150*2P		

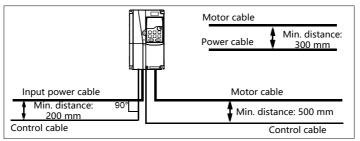
Note:

- Cables of the sizes recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100m, and the current is the rated current.
- The terminals P1, (+), PB, and (-) are used to connect to DC reactors and braking accessories.

Table D-2 AC 3PH 520V	(-15%)–690V(+10%)

	Recomn cable siz		Conr	ectable ca	Terminal	Fastening		
VFD model	RST UVW	PE	RST UVW	P1 (+)	PB (+) (-)	PE	screw	torque (Nm)
GD350-19-022G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
GD350-19-030G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
GD350-19-037G-6	16	16	16–25	16–25	6–10	16–25	M8	9–11
GD350-19-045G-6	16	16	16–25	16–35	16–25	16–25	M8	9–11
GD350-19-055G-6	25	16	16–25	16–35	16–25	16–25	M10	18–23
GD350-19-075G-6	35	16	35–50	25–50	25–50	16–50	M10	18–23
GD350-19-090G-6	35	16	35–50	25–50	25–50	16–50	M10	18–23
GD350-19-110G-6	50	25	50–95	50–95	25–95	25–95	M10	18–23
GD350-19-132G-6	70	35	70–95	70–95	25–95	35–95	M10	18–23
GD350-19-160G-6	95	50	95–150	95–150	25–150	50–150	Nuts are	e used for
GD350-19-185G-6	95	50	95–150	95–150	25–150	50–150	terminal	s. You are
GD350-19-200G-6	120	70	120–300	120–300	35–300	70–240	recommen	ded to use a

	Recomn cable siz		Connectable cable size (mm²)			Terminal	Fastening	
VFD model	RST UVW	PE	RST UVW	P1 (+)	РВ (+) (-)	PE	screw	torque (Nm)
GD350-19-220G-6	185	95	120–300	120–300	35–300	95–240	wrench	or sleeve.
GD350-19-250G-6	185	95	185–300	185–300	35–300	95–240		
GD350-19-280G-6	240	120	240–300	240-300	70–300	120–240		
GD350-19-315G-6	95*2P	120	95*2P –150*2P	95*2P -150*2P	95*2P -150*2P	120–300		
GD350-19-355G-6	95*2P	150	95*2P -150*2P	95*2P 150*2P	95*2P 150*2P	150–300		
GD350-19-400G-6	150*2P	150	150*2P -300*2P	95*2P 150*2P	95*2P 150*2P	150–300		
GD350-19-450G-6	95*4P	95*2P	95*4P -150*4P	95*4P -150*4P	95*4P -150*4P	95*2P -150*2P		
GD350-19-500G-6	95*4P	95*2P	95*4P -150*4P	95*4P -150*4P	95*4P -150*4P	95*2P -150*2P		
GD350-19-560G-6	95*4P	95*4P	95*4P -150*4P	95*4P -150*4P	95*4P -150*4P	95*4P -150*4P		
GD350-19-630G-6	150*4P	150*2P	150*4P –300*4P	150*4P –300*4P	150*4P –300*4P	150*4P 240*4P		


- Cables of the sizes recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100m, and the current is the rated current.
- The terminals P1, (+), PB, and (-) are used to connect to DC reactors and braking accessories.

D.5.4 Cable arrangement

Motor cables must be arranged away from other cables. The motor cables of several inverters can be arranged in parallel. It is recommended that you arrange the motor cables, input power cables, and control cables separately in different trays. The output dU/dt of the inverters may increase electromagnetic interference on other cables. Do not arrange other cables and the motor cables in parallel.

If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.

The cable trays must be connected properly and well grounded. Aluminum trays can implement local equipotential. The following figure shows the cable arrangement.

Cable arrangement distances

D.5.5 Insulation inspection

Check the motor and the insulation conditions of the motor cable before running the motor.

- Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the VFD.
- Use a megameter of 500 V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

Note: The insulation resistance is reduced if it is damp inside the motor. If it may be damp, you need to dry the motor and then measure the insulation resistance again.

D.6 Breaker and electromagnetic contactor

You need to add a fuse to prevent overload. You need to add a fuse to prevent overload.

You need to configure a manually manipulated molded case circuit breaker (MCCB) between the AC power supply and VFD. The breaker must be locked in the open state to facilitate installation and inspection. The capacity of the breaker needs to be 1.5 to 2 times the VFD rated input current.

According to the working principle and structure of breakers, if the manufacturer's regulation is not followed, hot ionized gases may escape from the breaker enclosure when a short-circuit occurs. To ensure safe use, exercise extra caution when installing and placing the breaker. Follow the manufacturer's instructions.

To ensure safety, you can configure an electromagnetic contactor on the input side to control the switch-on and switch-off of the main circuit power, so that the input power supply of the VFD can be effectively cut off when a system fault occurs.

VFD model	Fuse (A)	Braker (A)	Contactor rated current (A)
GD350-19-1R5G-4-B	15	16	10
GD350-19-2R2G-4-B	17.4	16	10

Table D-3 AC 3PH 380V (-15%)-440V(+10%)

VFD model	Fuse (A)	Braker (A)	Contactor rated current (A)
GD350-19-004G-4-B	30	25	16
GD350-19-5R5G-4-B	45	25	16
GD350-19-7R5G-4-B	60	40	25
GD350-19-011G-4-B	78	63	32
GD350-19-015G-4-B	105	63	50
GD350-19-018G-4-B	114	100	63
GD350-19-022G-4-B	138	100	80
GD350-19-030G-4-B	186	125	95
GD350-19-037G-4-B	228	160	120
GD350-19-045G-4-B	270	200	135
GD350-19-055G-4-B	315	200	170
GD350-19-075G-4-B	420	250	230
GD350-19-090G-4-B	480	315	280
GD350-19-110G-4-B	630	400	315
GD350-19-132G-4	720	400	380
GD350-19-160G-4	870	630	450
GD350-19-185G-4	1110	630	580
GD350-19-200G-4	1110	630	580
GD350-19-220G-4	1230	800	630
GD350-19-250G-4	1380	800	700
GD350-19-280G-4	1500	1000	780
GD350-19-315G-4	1740	1200	900
GD350-19-355G-4	1860	1280	960
GD350-19-400G-4	2010	1380	1035
GD350-19-450G-4	2445	1630	1222
GD350-19-500G-4	2505	1720	1290

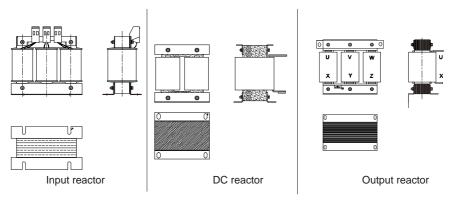
Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.

VFD model	Fuse (A)	Braker (A)	Contactor rated current (A)	
GD350-19-022G-6	105	63	50	
GD350-19-030G-6	105	63	50	
GD350-19-037G-6	114	100	63	
GD350-19-045G-6	138	100	80	
GD350-19-055G-6	186	125	95	

Table D-4 AC 3PH 520V(-15%)-690V(+10%)

VFD model	Fuse (A)	Braker (A)	Contactor rated current (A)
GD350-19-075G-6	270	200	135
GD350-19-090G-6	270	200	135
GD350-19-110G-6	315	200	170
GD350-19-132G-6	420	250	230
GD350-19-160G-6	480	315	280
GD350-19-185G-6	480	315	280
GD350-19-200G-6	630	400	315
GD350-19-220G-6	720	400	380
GD350-19-250G-6	720	400	380
GD350-19-280G-6	870	630	450
GD350-19-315G-6	1110	630	580
GD350-19-355G-6	1110	630	580
GD350-19-400G-6	1230	800	630
GD350-19-450G-6	1470	960	735
GD350-19-500G-6	1500	1000	780
GD350-19-560G-6	1740	1200	900
GD350-19-630G-6	2010	1380	1035

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.


D.7 Reactor

When the voltage of the grid is high, the transient large current that flows into the input power circuit may damage rectifier components. You need to configure an AC reactor on the input side, which can also improve the current adjustment coefficient on the input side.

When the distance between the VFD and motor is longer than 50 m, the parasitic capacitance between the long cable and ground may cause large leakage current, and overcurrent protection of the VFD may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. When a VFD is used to drive multiple motors, take the total length of the motor cables (that is, sum of the lengths of the motor cables) into account. When the total length is longer than 50 m, an output reactor must be added on the output side of the VFD. If the distance between the VFD and motor is 50 m to 100 m, select the reactor according to the following table. If the distance is longer than 100 m, contact INVT's technical support technicians.

DC reactors can be directly connected to 380V 132kW and higher models and all 660V models. DC

reactors can improve the power factor, avoid damage to bridge rectifiers caused due to large input current of the VFD when large-capacity transformers are connected, and also avoid damage to the rectification circuit caused due to harmonics generated by grid voltage transients or phase-control loads.

Table D-5 Reactor model selection for AC 3PH 380V(-15%)-440V(+10%)

VFD model	Input reactor	DC reactor	Output reactor
GD350-19-1R5G-4-B	ACL2-1R5-4	/	OCL2-1R5-4
GD350-19-2R2G-4-B	ACL2-2R2-4	/	OCL2-2R2-4
GD350-19-004G-4-B	ACL2-004-4	/	OCL2-004-4
GD350-19-5R5G-4-B	ACL2-5R5-4	/	OCL2-5R5-4
GD350-19-7R5G-4-B	ACL2-7R5-4	/	OCL2-7R5-4
GD350-19-011G-4-B	ACL2-011-4	/	OCL2-011-4
GD350-19-015G-4-B	ACL2-015-4	/	OCL2-015-4
GD350-19-018G-4-B	ACL2-018-4	Built in	OCL2-018-4
GD350-19-022G-4-B	ACL2-022-4	Built in	OCL2-022-4
GD350-19-030G-4-B	ACL2-037-4	Built in	OCL2-037-4
GD350-19-037G-4-B	ACL2-037-4	Built in	OCL2-037-4
GD350-19-045G-4-B	ACL2-045-4	Built in	OCL2-045-4
GD350-19-055G-4-B	ACL2-055-4	Built in	OCL2-055-4
GD350-19-075G-4-B	ACL2-075-4	Built in	OCL2-075-4
GD350-19-090G-4-B	ACL2-110-4	Built in	OCL2-110-4
GD350-19-110G-4-B	ACL2-110-4	Built in	OCL2-110-4
GD350-19-132G-4	ACL2-160-4	DCL2-132-4	OCL2-200-4
GD350-19-160G-4	ACL2-160-4	DCL2-160-4	OCL2-200-4
GD350-19-185G-4	ACL2-200-4	DCL2-200-4	OCL2-200-4
GD350-19-200G-4	ACL2-200-4	DCL2-220-4	OCL2-200-4

VFD model	Input reactor	DC reactor	Output reactor
GD350-19-220G-4	ACL2-280-4	DCL2-280-4	OCL2-280-4
GD350-19-250G-4	ACL2-280-4	DCL2-280-4	OCL2-280-4
GD350-19-280G-4	ACL2-280-4	DCL2-280-4	OCL2-280-4
GD350-19-315G-4	ACL2-350-4	DCL2-315-4	OCL2-350-4
GD350-19-355G-4	Standard	DCL2-400-4	OCL2-350-4
GD350-19-400G-4	Standard	DCL2-400-4	OCL2-400-4
GD350-19-450G-4	Standard	DCL2-500-4	OCL2-500-4
GD350-19-500G-4	Standard	DCL2-500-4	OCL2-500-4

Note:

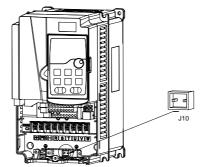
- The rated input voltage drop of input reactors is 2%±15%.
- The current adjustment coefficient on the input side of the VFD is higher than 90% after a DC reactor is configured.
- The rated output voltage drop of output reactors is 1%±15%.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

VFD model	Input reactor	DC reactor	Output reactor
GD350-19-022G-6	ACL2-030-6	DCL2-030-6	OCL2-030-6
GD350-19-030G-6	ACL2-030-6	DCL2-030-6	OCL2-030-6
GD350-19-037G-6	ACL2-055-6	DCL2-055-6	OCL2-055-6
GD350-19-045G-6	ACL2-055-6	DCL2-055-6	OCL2-055-6
GD350-19-055G-6	ACL2-055-6	DCL2-055-6	OCL2-055-6
GD350-19-075G-6	ACL2-110-6	DCL2-110-6	OCL2-110-6
GD350-19-090G-6	ACL2-110-6	DCL2-110-6	OCL2-110-6
GD350-19-110G-6	ACL2-110-6	DCL2-110-6	OCL2-110-6
GD350-19-132G-6	ACL2-185-6	DCL2-185-6	OCL2-185-6
GD350-19-160G-6	ACL2-185-6	DCL2-185-6	OCL2-185-6
GD350-19-185G-6	ACL2-185-6	DCL2-185-6	OCL2-185-6
GD350-19-200G-6	ACL2-250-6	DCL2-250-6	OCL2-250-6
GD350-19-220G-6	ACL2-250-6	DCL2-250-6	OCL2-250-6
GD350-19-250G-6	ACL2-250-6	DCL2-250-6	OCL2-250-6
GD350-19-280G-6	ACL2-350-6	DCL2-350-6	OCL2-350-6
GD350-19-315G-6	ACL2-350-6	DCL2-350-6	OCL2-350-6
GD350-19-355G-6	ACL2-350-6	DCL2-350-6	OCL2-350-6
GD350-19-400G-6	Standard	DCL2-400-6	OCL2-400-6
GD350-19-450G-6	Standard	DCL2-560-6	OCL2-560-6

Table D-6 Reactor model selection for AC 3PH 520V(-15%)-690V(+10%)

VFD model	Input reactor	DC reactor	Output reactor
GD350-19-500G-6	Standard	DCL2-560-6	OCL2-560-6
GD350-19-560G-6	Standard	DCL2-560-6	OCL2-560-6
GD350-19-630G-6	Standard	DCL2-630-6	OCL2-630-6

- The rated input voltage drop of input reactors is 2%±15%.
- The current adjustment coefficient on the input side of the VFD is higher than 90% after a DC reactor is configured.
- The rated output voltage drop of output reactors is 1%±15%.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.


D.8 Filters

J10 is not connected in factory for the 380V 110kW and lower VFD models. Connect the J10 packaged with the manual if the requirements of level C3 need to be met.

J10 is connected in factory for the 380V 132kW and higher VFD models, all of which meet the requirements of level C3.

Disconnect J10 in the following situations:

- The EMC filter is applicable to the neutral-grounded grid system. If it is used for the IT grid system (that is, the grid system with the neutral point not grounded), disconnect J10.
- If leakage protection occurs during configuration of a residual-current circuit breaker, disconnect J10.

Note: Do not connect C3 filters in IT power systems.

Interference filters on the input side can reduce the VFD interference on the surrounding devices.

Noise filters on the output side can decrease the radio noise caused by the cables between VFDs and

motors and the leakage current of conducting wires.

INVT provides some of the filters for you to choose.

D.8.1 Filter model description

Field	Description
А	FLT: VFD filter series
	Filter type
В	P: Power input filter
	L: Output filter
	Voltage class
С	04: AC 3PH 380V (-15%)–440V (+10%)
	06: AC 3PH 520V (-15%)–690V (+10%)
D	3-digit code indicating the rated current. For example, 015 indicates 15 A.
	Filter performance
Е	L: General
	H: High-performance
	Filter application environment
F	A: Environment Category I (IEC61800-3), C1 (EN 61800-3)
	B: Environment Category I (IEC61800-3), C2 (EN 61800-3)
	C: Environment Category II (IEC61800-3), C3 (EN 61800-3)

D.8.2 Filter model selection

Table D-7 AC 3PH 380V (-15%)-440V(+10%)

VFD model	Input filter	Output filter
GD350-19-1R5G-4-B		
GD350-19-2R2G-4-B	FLT-P04006L-B	FLT-L04006L-B
GD350-19-004G-4-B		
GD350-19-5R5G-4-B	FLT-P04016L-B	FLT-L04016L-B
GD350-19-7R5G-4-B	FLT-P04032L-B	FLT-L04032L-B
GD350-19-011G-4-B	FEI-F04032L-B	
GD350-19-015G-4-B		FLT-L04045L-B
GD350-19-018G-4-B	FLT-P04045L-B	
GD350-19-022G-4-B		
GD350-19-030G-4-B	FLT-P04065L-B	FLT-L04065L-B
GD350-19-037G-4-B	FLT-P04100L-B	FLT-L04100L-B
GD350-19-045G-4-B	FLI-F04100L-B	FLI-L04100L-B
GD350-19-055G-4-B	FLT-P04150L-B	FLT-L04150L-B

VFD model	Input filter	Output filter
GD350-19-075G-4-B		
GD350-19-090G-4-B		
GD350-19-110G-4-B	FLT-P04240L-B	FLT-L04240L-B
GD350-19-132G-4		
GD350-19-160G-4		
GD350-19-185G-4	FLT-P04400L-B	FLT-L04400L-B
GD350-19-200G-4		
GD350-19-220G-4		
GD350-19-250G-4	FLT-P04600L-B	FLT-L04600L-B
GD350-19-280G-4		
GD350-19-315G-4		
GD350-19-355G-4	FLT-P04800L-B	FLT-L04800L-B
GD350-19-400G-4		
GD350-19-450G-4		
GD350-19-500G-4	FLT-P041000L-B	FLT-L041000L-B

Note:

- The input EMI meets the C2 requirements after an input filter is configured.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

VFD model	Input filter	Output filter	
GD350-19-022G-6			
GD350-19-030G-6	FLT-P06050H-B	FLT-L06050H-B	
GD350-19-037G-6			
GD350-19-045G-6			
GD350-19-055G-6			
GD350-19-075G-6	FLT-P06100H-B	FLT-L06100H-B	
GD350-19-090G-6			
GD350-19-110G-6			
GD350-19-132G-6			
GD350-19-160G-6	FLT-P06200H-B	FLT-L06200H-B	
GD350-19-185G-6			
GD350-19-200G-6			
GD350-19-220G-6	FLT-P06300H-B	FLT-L06300H-B	

VFD model	Input filter	Output filter	
GD350-19-250G-6			
GD350-19-280G-6			
GD350-19-315G-6			
GD350-19-355G-6	FLT-P06400H-B	FLT-L06400H-B	
GD350-19-400G-6			
GD350-19-450G-6			
GD350-19-500G-6	FLT-P061000H-B	FLT-L061000H-B	
GD350-19-560G-6			
GD350-19-630G-6			

- The input EMI meets the C2 requirements after an input filter is configured.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

D.9 Braking system

D.9.1 Braking component selection

When the VFD driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the VFD, causing the bus voltage of the VFD to rise. If the bus voltage exceeds a specific value, the VFD reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

	\diamond The design, installation, commissioning, and operation of the device must be
	performed by trained and qualified professionals.
	\diamond Follow all the "Warning" instructions during the operation. Otherwise, major
	physical injuries or property loss may be caused.
	\diamond Only qualified electricians are allowed to perform the wiring. Otherwise, damage
4	to the VFD or braking components may be caused.
	♦ Read the braking resistor or unit instructions carefully before connecting them to
	the VFD.
	\diamond Connect braking resistors only to the terminals PB and (+), and braking units
	only to the terminals (+) and (-). Do not connect them to other terminals.
	Otherwise, damage to the braking circuit and VFD and fire may be caused.
•	\diamond Connect the braking components to the VFD according to the wiring diagram. If
	the wiring is not properly performed, damage to the VFD or other devices may
	be caused.

The 380V 110kW and lower VFD models are equipped with built-in braking units, and the 380V 132kW and higher VFD models need to be configured with external braking units. Select braking resistors according to the actual situation.

	Braking unit		Braking resistor				
VFD model	BU model	Rated continuous braking current (A)	Max. peak braking current (A)	Resistance applicable to 100% braking torque (Ω)	Min. power for lifting (kW)	Min. power for horizontal moving (kW)	Min. resistance (Ω)
GD350-19-1R5G-4-B		4	4.8	326	≥0.75	≥0.4	170
GD350-19-2R2G-4-B		5.4	6.5	222	≥1.1	≥0.5	130
GD350-19-004G-4-B		8.8	10.5	122	≥2	≥1	80
GD350-19-5R5G-4-B		11.6	14	89	≥2.8	≥1.4	60
GD350-19-7R5G-4-B		14.9	17.8	65	≥3.8	≥1.9	47
GD350-19-011G-4-B		22.6	27	44	≥5.5	≥2.8	31
GD350-19-015G-4-B		30.4	36.5	32	≥7.5	≥3.8	23
GD350-19-018G-4-B	Built-in	36.8	44.2	27	≥9	≥4.5	19
GD350-19-022G-4-B	braking	41	49.4	22	≥11	≥5.5	17
GD350-19-030G-4-B	unit	54	65	17	≥15	≥7.5	13
GD350-19-037G-4-B		63.6	76.4	13	≥18.5	≥9	11
GD350-19-045G-4-B		80	96	10	≥22.5	≥11	6.4
GD350-19-055G-4-B		100	120	8	≥27.5	≥13	6.4
GD350-19-075G-4-B		110	132	6.5	≥37	≥18	6.4
GD350-19-090G-4-B		160	190	5.4	≥45	≥22	4.4
GD350-19-110G-4-B		220	260	4.5	≥55	≥27	3.2
GD350-19-132G-4		DBU100H-2	20-4	3.7	≥66	≥33	3.2
GD350-19-160G-4				3.1	≥80	≥40	
GD350-19-185G-4		DBU100H-3	20-4	2.8	≥92	≥46	2.2
GD350-19-200G-4				2.5	≥100	≥50	
GD350-19-220G-4		BBUUGOV		2.2	≥110	≥55	1.0
GD350-19-250G-4		DBU100H-4	00-4	2	≥125	≥62	1.8
GD350-19-280G-4				3.6*2	≥70*2	≥35*2	
GD350-19-315G-4	Two DBU100H-320-4		3.2*2	≥80*2	≥40*2	0.010	
GD350-19-355G-4			2.8*2	≥90*2	≥45*2	2.2*2	
GD350-19-400G-4				2.4*2	≥100*2	≥50*2	
GD350-19-450G-4		Two		0.010	. 105*0		1.010
GD350-19-500G-4		DBU100H-4	00-4	2.0*2	≥125*2	≥62*2	1.8*2

Table D-9 Braking unit models for AC 3PH 380V(-15%)-440V(+10%)

- Select braking resistors according to the resistance and power data provided by our company, but the resistance cannot be less than the min. allowable resistance in the table. Otherwise, braking units may be damaged. In addition to the motor electricity generation power, braking resistors are related to inertia, DEC time, and potential energy, that is, greater inertia, shorter DEC time, and more frequent braking require braking resistors with higher power and smaller resistance.
- When grid voltages are different, you can adjust energy consumption braking threshold voltage.
 For example, if the threshold voltage needs to be increased, you need to increase the braking resistance.
- The recommended min. power of a braking resistor indicates the rated power of the resistor that can run in a long period of time in nature cooling condition. If air cooling fans are used, the braking resistance can be decreased slightly.
- When using an external braking unit, set the brake voltage class of the braking unit properly by referring to the manual of the dynamic braking unit. If the voltage class is set incorrectly, the VFD may not run properly.
- In hoisting applications, the resistor resistance needs to be less than the braking resistance applicable to 100% torque but greater than the min. resistance.

Do not use braking resistors whose resistance is lower than the specified minimum resistance. The VFD does not provide protection against overcurrent caused by resistors with low resistance.

The 660V VFD models need to be configured with external braking units. Select braking resistors according to the specific requirements (such as the braking torque and braking usage) on site.

VFD model	Braking unit model	Resistance applicable to 100% braking torque (Ω)	Min. power for lifting (kW)	horizontal	Min. resistance (Ω)
GD350-19-022G-6		55	11	5.5	
GD350-19-030G-6		40.3	15	7.5	
GD350-19-037G-6		32.7	18.5	9	
GD350-19-045G-6	DBU100H-110-6	26.9	23	11.5	10
GD350-19-055G-6	DB0100H-110-6	22	27.5	13.5	10
GD350-19-075G-6		16.1	37.5	19	
GD350-19-090G-6		13.4	45	22	
GD350-19-110G-6		11	55	27.5	
GD350-19-132G-6	DBU100H-160-6	9.2	66	33	6.9

Table D-10 Braking unit models for AC 3PH 520V(-15%)-690V(+10%)

VFD model	Braking unit model	Resistance applicable to 100% braking torque (Ω)	Min. power for lifting (kW)	Min. power for horizontal moving (kW)	Min. resistance (Ω)
GD350-19-160G-6		7.6	80	40	
GD350-19-185G-6		6.5	93	46	
GD350-19-200G-6	DBU100H-220-6	6.1	100	50	5
GD350-19-220G-6		5.5	110	55	
GD350-19-250G-6		4.8	125	62	
GD350-19-280G-6	DBU100H-320-6	4.3	140	70	3.4
GD350-19-315G-6		3.8	158	78	
GD350-19-355G-6		3.5	178	89	2.0
GD350-19-400G-6	DBU100H-400-6	3	200	100	2.8
GD350-19-450G-6		4.0*0	405*0	00*0	
GD350-19-500G-6	Two	4.8*2	125*2	63*2	0.4*0
GD350-19-560G-6	DBU100H-320-6	4.3*2	140*2	70*2	3.4*2
GD350-19-630G-6		3.8*2	315*2	158*2	

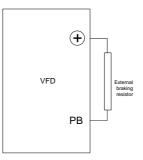
- Select braking resistors according to the resistance and power data provided by our company, but the resistance cannot be less than the min. allowable resistance in the table. Otherwise, braking units may be damaged. In addition to the motor electricity generation power, braking resistors are related to inertia, DEC time, and potential energy, that is, greater inertia, shorter DEC time, and more frequent braking require braking resistors with higher power and smaller resistance.
- When grid voltages are different, you can adjust energy consumption braking threshold voltage. For example, if the threshold voltage needs to be increased, increase the braking resistance.
- The recommended min. power of a braking resistor indicates the rated power of the resistor that can run in a long period of time in nature cooling condition. If air cooling fans are used, the braking resistance can be decreased slightly.
- When using an external braking unit, set the brake voltage class of the braking unit properly by referring to the manual of the dynamic braking unit. If the voltage class is set incorrectly, the VFD may not run properly.
- In hoisting applications, the resistor resistance needs to be less than the braking resistance applicable to 100% torque but greater than the min. resistance.

 Do not use braking resistors whose resistance is lower than the specified minimum resistance. The VFD does not provide protection against overcurrent caused by resistors with low resistance.

D.9.2 Braking resistor cable selection

Braking resistor cables should be shielded cables.

D.9.3 Braking resistor installation

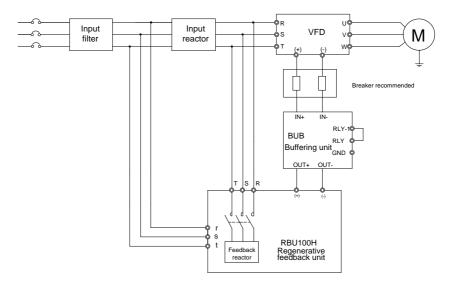

All resistors need to be installed in places with good cooling conditions.

	¢	The materials near the braking resistor or braking unit must be flame resistant.
A		since the surface temperature of the resistor is high and air flowing from the
74		resistor is of hundreds of degrees Celsius. Prevent any materials from coming
		into contact with the resistor.

Braking resistor installation


The 380V 110kW and lower VFD models need only external braking resistors.
 PB and (+) are the terminals for connecting braking resistors.

Braking unit installation


All 660V VFD models need external braking units.
 (+) and (-)are the terminals for connecting braking units.
 The connection cables between the (+) and (-) terminals of a VFD and those of a braking unit must be shorter than 5m, and the connection cables between the BR1 and BR2 terminals of a braking unit and the two ends of a braking resistor must be shorter than 10m.

The following figure shows the connection of one VFD to a dynamic braking unit.

D.10 Regenerative feedback unit

D.10.1 Installation wiring for regenerative feedback unit

Note: For how to select input filter, input reactor, and feedback reactor models, see the RBU100H regenerative feedback unit operation manual.

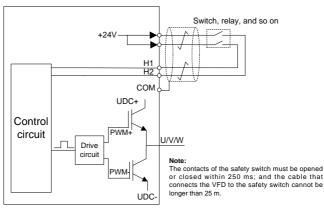
D.10.2 Regenerative feedback unit model selection

The following lists the mapping between the 380V VFD models, buffering unit models, and regenerative feedback unit models.

VFD model	Buffering unit	Regenerative feedback unit
GD350-19-022G-4-B		RBU100H-022-4
GD350-19-030G-4-B		RBU100H-030-4
GD350-19-037G-4-B		RBU100H-045-4
GD350-19-045G-4-B	BUB-110-4	RBU100H-045-4
GD350-19-055G-4-B		RBU100H-055-4
GD350-19-075G-4-B		RBU100H-090-4
GD350-19-090G-4-B		RBU100H-090-4
GD350-19-110G-4-B		RBU100H-110-4
GD350-19-132G-4		RBU100H-132-4
GD350-19-160G-4	BUB-250-4	RBU100H-160-4
GD350-19-185G-4		RBU100H-200-4
GD350-19-200G-4	Two	RBU100H-200-4
GD350-19-220G-4	BUB-250-4	RBU100H-250-4

VFD model	Buffering unit	Regenerative feedback unit
GD350-19-250G-4		RBU100H-250-4
GD350-19-280G-4		Two RBU100H-160-4
GD350-19-315G-4		Two RBU100H-160-4
GD350-19-355G-4		Two RBU100H-200-4
GD350-19-400G-4	Three	Two RBU100H-200-4
GD350-19-450G-4		Two RBU100H-250-4
GD350-19-500G-4	BUB-250-4	Two RBU100H-250-4

The following lists the mapping between the 660V VFD models, buffering unit models, and regenerative feedback unit models.


VFD model	Buffering unit	Regenerative feedback unit
GD350-19-022G-6		RBU100H-055-6
GD350-19-030G-6		RBU100H-055-6
GD350-19-037G-6		RBU100H-055-6
GD350-19-045G-6		RBU100H-055-6
GD350-19-055G-6	BUB-160-6	RBU100H-055-6
GD350-19-075G-6	BOB-100-0	RBU100H-090-6
GD350-19-090G-6		RBU100H-090-6
GD350-19-110G-6		RBU100H-160-6
GD350-19-132G-6		RBU100H-160-6
GD350-19-160G-6		RBU100H-160-6
GD350-19-185G-6		RBU100H-200-6
GD350-19-200G-6		RBU100H-200-6
GD350-19-220G-6		RBU100H-315-6
GD350-19-250G-6	BUB-400-6	RBU100H-315-6
GD350-19-280G-6		RBU100H-315-6
GD350-19-315G-6		RBU100H-315-6
GD350-19-355G-6		RBU100H-400-6
GD350-19-400G-6		RBU100H-400-6
GD350-19-450G-6		Two RBU100H-315-6
GD350-19-500G-6	Two BUB-400-6	Two RBU100H-315-6
GD350-19-560G-6		Two RBU100H-315-6
GD350-19-630G-6		Two RBU100H-315-6

Note: For details about how to use buffering units and regenerative feedback units, see the BUB series buffering unit operation manual and RBU100H regenerative feedback unit operation manual.

Appendix E STO function description

Reference standards: IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, IEC 62061, ISO 13849-1, and IEC 61800-5-2.

You can enable the safe torque off (STO) function to prevent unexpected startups when the main power supply of the drive is not switched off. The STO function switches off the drive output by turning off the drive signals to prevent unexpected startups of the motor (see the following figure). After the STO function is enabled, you can perform some-time operations (such as non-electrical cleaning in the lathe industry) and maintain the non-electrical components of the device without switching off the drive.

E.1 STO function logic table

STO input state	Corresponding fault
	The STO function is triggered, and the drive stops running.
H1 and H2 opened simultaneously	Fault code:
	40: Safe torque off (STO)
	The STOP function is not triggered, and the drive runs
H1 and H2 closed simultaneously	properly.
	The STL1, STL2, or STL3 fault occurs.
One of LL and LD anonad and the	Fault code:
One of H and H2 opened, and the	41: Channel H1 exception (STL1)
other closed	42: Channel H2 exception (STL2)

The following table describes the input states and corresponding faults of the STO function.

E.2 STO channel delay description

The following table describes the trigger and indication delay of the STO channels.

43: Channel H1 and H2 exceptions (STL3)

STO mode	STO trigger delay ¹ and indication delay ²
STO fault: STL1	Trigger delay < 10ms
	Indication delay < 280ms
STO fault: STL2	Trigger delay < 10ms
	Indication delay < 280ms
	Trigger delay < 10ms
STO fault: STL3	Indication delay < 280ms
STO fault: STO	Trigger delay < 10ms
	Indication delay < 100ms

- 1. STO trigger delay: Time interval between trigger the STO function and switching off the drive output
- 2. STO indication delay: Time interval between trigger the STO function and STO output state indication

E.3 STO function installation checklist

Before installing the STO, check the items described in the following table to ensure that the STO function can be properly used.

	Item	
	Ensure that the drive can be run or stopped randomly during commissioning.	
	Stop the drive (if it is running), disconnect the input power supply, and isolate the drive	
	from the power cable through the switch.	
	Check the STO circuit connection according to the circuit diagram.	
	Check whether the shielding layer of the STO input cable is connected to the +24 V	
	reference ground COM.	
	Connect the power supply.	
	Test the STO function as follows after the motor stops running:	
	\diamond If the drive is running, send a stop command to it and wait until the shaft of the	
	motor stops rotating.	
	\diamond Activate the STO circuit and send a start command to the drive. Ensure that the	
	motor does not start.	
	♦ Deactivate the STO circuit.	
	Restart the drive, and check whether the motor is running properly.	
	Test the STO function as follows when the motor is running:	
	Start the drive. Ensure that the motor is running properly.	
	♦ Activate the STO circuit.	
	\diamond The drive reports an STO fault. Ensure that the motor coasts to stop rotating.	
	♦ Deactivate the STO circuit.	
	Restart the drive, and check whether the motor is running properly.	

Appendix F Further information

F.1 Product and service queries

If you have any queries about the product, contact the local INVT office. Please provide the model and serial number of the product you query about. You can visit www.invt.com to find a list of INVT offices.

F.2 Feedback on INVT VFD manuals

Your comments on our manuals are welcome. Visit www.invt.com, directly contact online service personnel or choose **Contact Us** to obtain contact information.

F.3 Documents on the Internet

You can find manuals and other product documents in the PDF format on the Internet. Visit www.invt.com and choose **Support > Download**.

Service line: 86-755-23535967 E-mail: overseas@invt.com.cn Website: www.invt.com

The products are owned by Shenzhen INVT Electric Co.,Ltd. Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

Shenzhen INVT Electric Co., Ltd. (origin code: 01) Address: INVT Guangming Technology Building, Songbai Road, Matian, Guangming District, Shenzhen, China

■UPS

INVT Power Electronics (Suzhou) Co., Ltd. (origin code: 06) Address: 1# Kunlun Mountain Road, Science&Technology Town, Gaoxin District, Suzhou, Jiangsu, China

Industrial Automation:

HMI PLC

Elevator Intelligent Control System

Energy & Power:

New Energy Vehicle Powertrain System

- New Energy Vehicle Motor

VFD Servo System

Rail Transit Traction System

Solar Inverter SVG

New Energy Vehicle Charging System

Copyright© INVT.

Manual information may be subject to change without prior notice.